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Abstract  
 
The birth-interval approach to the study of fertility reflects two aspects of the process of reproduction: 
(1) the quantum of fertility as indicated by the proportion of women who move to the next higher 
parity; and (2) the tempo of fertility, as measured by the time it takes to make the transition for those 
women who continue reproduction. In most previous empirical analyses, the focus has been on the 
quantum of fertility using proportional hazard models for the intensity of birth. That is, the rates at 
which children are born to a defined set of women within a specified unit of time is modelled as a 
function of covariates such that the effect of covariates is to increase or decrease such intensity relative 
to that of a reference category. This paper focuses on the tempo of fertility where covariates act 
multiplicatively on the duration itself so that their effect is to accelerate or decelerate the transition 
time between successive births relative to that of a reference category. We utilize the flexibility of a 
family of parametric duration models to select a statistically appropriate model for a given birth 
interval using data from rural China. The results show that the distributional shape of birth intervals 
depends on the birth order of the index child and that inferences concerning covariate effects on birth 
intervals are sensitive to model choice. The flexible parametric approach suggested in this paper 
provides a statistically well grounded, theoretically appropriate, and empirically evident alternative to 
the usually untenable quantum-based proportional hazards modelling of birth interval data. 
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1. Introduction 
 
Studies on age at marriage and length of successive birth intervals have acquired added 
importance in the development of fertility theories and understanding of fertility transitions, 
because of their supposed relationship to fertility decline; the later the first birth (the longer 
the interval), the lower the total fertility (Hirshman and Rindfuss 1982; Rindfuss, Palmore, 
and Bumpass, 1987; Hirshman 1994; Bongaarts 1999). There is considerable evidence that 
both the postponement of first marriage and the lengthening of birth intervals are important 
components of historical fertility transitions as well as contemporary fertility declines 
(Hirshman 1994). Several inferences are consistent with the view that in much of the 
developing world, women with large families tend to have shorter birth intervals than those 
with smaller families.  
   The spacing of births also has a significant bearing on maternal and child health through the 
dynamics of sibling competition  and maternal depletion hypotheses (Gribble, 1993; Hobcraft, 
McDonald & Rustein, 1985; Majumder, May & Pant, 1997; Palloni & Millman, 1986; 
Pedersen, 2000; Rafalimanana and Westoff, 2000; Rodriguez, Hobcraft, Menken & Trussell, 
1984). According to the competition hypothesis, the birth of each successive child generates 
competition for scarce resources among siblings in the household which subsequently leads to 
a lower quality of care and attention to each child.  The family resources may also be 
stretched to the limit, increasing the probability of children in such households becoming 
malnourished (Gribble, 1993). The maternal depletion syndrome contends that births in rapid 
succession physiologically deplete the mother of energy and nutrition which may lead to 
premature births or pregnancy complications thus increasing the risk of infant or maternal 
death, or impairing the mother’s ability to nurture her children. Additionally, women with 
closely spaced births may still have very young children and, as such, are less likely to attend 
prenatal care services which, in turn, may increase maternal and child mortality risks.   
Further, the early arrival of a new child often necessitates the premature weaning of the 
previous child, exposing the weaned one to malnutrition and increasing the child’s 
vulnerability to infectious and parasitic diseases. Invariably, longer birth spacing has been 
found to profoundly increase the probability of infant survival (Bicego & Ahmad, 1996; Defo, 
1997; Pedersen, 2000). Understanding the timing and spacing of births thus provides a 
thorough view of attitudes toward family size, policy impacts, as well as differentials in 
fertility and childhood mortality levels. A deeper analysis of the dynamics of child spacing is, 
therefore, a topic of interest that worth investigating.   
   The birth interval approach to studying fertility views the family building process as 
consisting of a series of transitions, where women move successively from single-life to 
marriage; from marriage to first birth; from first to second birth; and so on, until they reach 
their completed family size (Rodriguez et al., 1984).  While the point of entry into the process 
may be defined as the legitimate age to marriage or as entry into motherhood, the main focus 
of this analysis is on the process of transition from one stage to the next, or the intervals 
between successive births. The transition process is studied in terms of the birth function, 
defined as the cumulative proportion of women having a birth by successive duration since 
the previous birth (or since marriage in the case of first birth). This function reflects two 
aspects of the process of reproduction. The first is the quantum of fertility indicated by the 
proportion of women progressing to the next higher parity (parity progression ratio), and the 
second is the tempo of fertility measured by the time it takes to make the transition for those 
women who continue reproduction.  
   In most empirical analyses of birth interval data, the focus has been on the quantum of 
fertility (that is, the rates at which children are born to a defined set of women within a 
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specified unit of time) using proportional hazard models of the type discussed in Cox (1972). 
The proportional hazards model (Cox, 1972) specifies the intensity of birth as a function of an 
unspecified time dependent baseline hazard, λ0(t), and the covariates, 
 
λ(t, z) = λ0(t)exp(zβ)                                                                                             (1) 
 
where, z is a vector of covariates and β is a vector of unknown regression parameters. 
While the nuisance baseline specification makes the Cox model attractive particularly in 
contexts where the focus is not on the time function, the model may be too restrictive because 
the assumption of proportional hazards is often unrealistic in many real life situations. Also, 
there are instances where one’s research interest centers on the distributional shape of the time 
function and thus calling for alternative models. 
   In this paper, we present a second class of models, more akin to ordinary linear regression, 
that specifies the covariates to act multiplicatively on tempo of fertility (or linearly on log-
tempo) rather than on the quantum (rate of birth). We demonstrate how a number of common 
parametric duration models like the Weibull and log-normal may be embedded in a single 
parametric framework, and how each special-case model may be assessed relative to a more 
comprehensive one. This class of models is then applied on birth interval data from Yunnan 
province in rural China with a view to examining the distributional shape of birth intervals 
and the sensitivity of inferences to the choice of a model. In the development of fertility 
theories and understanding the timing of fertility transitions, China is of particular interest 
since its major family planning programs ‘the later-longer-fewer (wan-xi-shao)’ campaign in 
the 1970s, and the one-child policy, introduced in 1979, have emphasized both delayed 
marriage and childbearing and longer spacing between the first and second child (Feeney and 
Wang 1993).  
   The paper thus has both methodological and substantive objectives. The methodological 
objective centres on the application of a flexible family of parametric survival models to the 
analysis of birth interval data. The second set of objectives, of a substantive nature, relate to 
examining correlates of birth spacing in rural China.  In the next section, we introduce the 
class of flexible parametric duration models and describe how covariates effects are estimated 
in such models. In Section 3, we fit this family of models to birth interval data from Yunnan 
province in rural China and discuss the results, while Section 4 summarises the contents of the 
paper. 
 
2. Family of Flexible Parametric Duration Functions 
 
2.1 Accelerated failure-time models for the tempo of fertility 
 
Suppose we denote by T0 the time (say, birth interval in months) associated with the baseline 
category corresponding to zero-values for the covariate (z = 0).  Such baseline levels may, for 
example, be women with no education (to be later compared with those having some primary- 
or secondary-level education) or urban residents (to be compared with rural residents). Then, 
the accelerated tempo model specifies that if the vector of covariates had been z (z ≠ 0), the 
corresponding time (time to next birth) is  
 
 T = T0exp(zβ),                                                                                                             (2) 
 
or, equivalently,  
 
       lnT = ln T0 + zβ                                                                                                    (3) 
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where, T is the vector of birth intervals (durations), z is a vector of covariates, and β is a 
vector of unknown regression parameters. Since covariates alter, by a scale factor, the rate at 
which an average woman traverses the time axis, (2) may be referred to as the accelerated 
failure time model (accelerated tempo of fertility in the context of this paper).  Thus, for 
proportional hazards model (1), the explanatory variables act multiplicatively on the baseline 
rate so that their effect is to increase or decrease the rate of birth relative to the baseline rate   
λ0(t). For accelerated tempo models, on the other hand, the explanatory variables act 
multiplicatively on time to the event (birth in our case) so that their effect is to accelerate or 
decelerate transition time to birth relative to that of the baseline category (T0). 
 
The model in (3) is a linear model with lnT0 playing the role of an error term with an 
underlying baseline distribution. Usually, an intercept term α and a scale parameter δ are 
allowed in the model to give 
 
                   lnT = α + zβ + δlnT0.                                                                          (4) 
 
In terms of the original (untransformed) times to birth, the effect of the intercept term and the 
scale factor are to scale and power the time to birth, respectively:  
 
                    T = exp(α + zβ + δlnT0) = T0

δexp(α)exp(zβ).                                     (5) 
 
In other words, the effect of covariates in an accelerated tempo model is to change the scale, 
but not the location, of a baseline distribution of birth times.1 
 
2.2     The choice between alternative baseline distributions 
 
As we saw above, the model for the response variable (4) consists of a linear effect composed 
of the covariates together with a random disturbance term. Such models may be rewritten 
more explicitly as 
 
                           lnT = zβ+ δε                                                                                       (6) 
 
in which the intercept is incorporated in the coefficient vector β and a more conventional 
notation is used for the random error term. The distribution of the random error term can be 
taken from a class of distributions that includes the extreme-value, normal, and logistic 
distributions, and by using a log-transformation, exponential, Weibull, log-normal, log-
logistic and gamma distributions. In general, the distribution may depend on additional shape 
parameter k. 
   Embedding competing models in a single parametric framework allows the methods of 
ordinary parametric inference to be used for discrimination and leads to an assessment of each 
competing model relative to a more comprehensive one. Stacy (1962) showed that the 
generalized gamma model could be useful in this regard. The generalized-gamma model is the 
distribution of T such that lnT = zβ+ δε, where the random error term ε has the density; 
 
                                                            
1 A point worth noting at this stage is that the parameterizations in (1) and (2) are different. A positive coefficient in 
(1) implies an increased birth intensity (shorter interval) while in (2) it implies longer interval (decreased intensity) 
relative to that of the baseline level. 
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f(k,ε) =  

1
Γ( )

exp{ exp( )}
k

kε ε−
, -∞ < zβ < ∞, -∞ < ε < ∞, and δ,k > 0.                    (7) 

 
Prentice (1974) showed that a transformation of the form w = k½(ε - ln(k)) leads to a standard 
normal distribution for w as k → ∞. Further, he extended the generalized gamma distribution 
by setting q = k-½ and by allowing the error density at -q to be a reflection, about the origin, of 
that of q. The parameter q = k-½ was chosen as the unique power of k that leads to finite, 
nonzero likelihood derivatives at the log-normal model for T.  
The final model with parameters -∞ < zβ < ∞, -∞ < q < ∞, and δ > 0, can be written as  
 

lnT = zβ+ δε, 
 
where the error density function f(q, ε) is  
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The distribution of T, when the error term has the density (8) will henceforth be called the 
Extended Generalized Gamma (EGG) distribution. As can be seen from the lower part of (8), 
the EGG model reduces to the standard normal distribution for ε when the shape parameter q 
is equal to zero. Accordingly, T will have a log-normal distribution. When the shape 
parameter q equals 1, (8) reduces to f(1,ε) = f(ε) = exp{ exp( )}ε ε− , -∞ < ε < ∞, which is the 
standard (type 1) extreme-value distribution. As lnT  is a linear function of ε, it has the same 
(extreme-value) distribution as ε. Hence T = exp(zβ+δε) will have a Weibull distribution. If q 
= 1 and δ = 1, then T has the exponential distribution as a special case of the Weibull 
distribution. The case of q = -1 corresponds to extreme maximum-value distribution for lnT. 
This, in turn, corresponds to reciprocal Weibull  distribution for T. The case of δ = 1 and q > 0 
is also of interest. Farewell and Prentice (1977) argue that this gives the ordinary gamma 
distribution for T, though, in accordance with Bergström and Edin (1992) and Ghilagaber 
(2005), this does not hold in our case illustration. Consequently, we shall label this special 
case (δ = 1, q > 0) the ‘gamma’ distribution in our illustrative example.   
   Thus, five models for T are included as special cases of the EGG model.  Since each of 
these five models is nested within the EGG model, its goodness of fit to the data, in relation to 
the more comprehensive EGG model, may be assessed through standard likelihood ratio tests.  
Another model of interest, though not a special case of the EGG model, is the log-logistic 
model. A log-logistic distribution is the distribution of T such that logT follows a logistic 
distribution. Description and applications of the log-logistic model may be found in Shoukri, 
Mian, and Tracy (1988), Singh, Lee, and George (1988), Diekmann (1992) or Blossfeld and 
Rohwer (2002).  
 
2.2 Estimation  
 
The practical estimation of (6) proceeds as follows. Consider survival times of n individuals 
t1, t2,...,tn and p covariates z1, z2,..., zp. Let di take value 0 if ti is a censoring time and value 1 
if ti represents an event time. The log-likelihood function ln(lnt; zβ, δ, q), assuming a 
noninformative censoring mechanism, will then be proportional to 
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where f(ε;q) is given by the EGG model (8), S(ε;q) is the corresponding survivor function, 
and εi = [ln(lnti) - ziβ]/δ. At each of several q-values the maximum likelihood estimates 

)(ˆ),(ˆ qandq δβ  are obtained by using the Newton-Raphson method to solve the normal 
equations arising from (9). Standard errors of coefficients may be obtained from the 
information matrix as usual. Below, we demonstrate the procedures described in this section 
through analysis of data from rural China. 
 
3. Analysis of birth-spacing in Yunnan province, rural China. 
 
3.1     Data Set  
 
The data on which our analyses is based come from interviews conducted in Huaning County, 
Yunnan province in the southwest of China, in May 2000. The total population of Huaning in 
2000 was 198,000, with over 90 percent engaged in agriculture. The main ethnic group is Han 
and about one third belong to minority groups, mainly Yi, Hui, and Miao. Huaning county 
was purposively selected, based on the local authorities willingness to cooperate.  
   In Rural China, each county is divided into townships and each township into administrative 
villages. These consist of a number of ‘natural villages', which are composed of groups or 
‘clusters’ of houses lying close to each other. Based on lists provided by local authorities, 
multistage cluster sampling techniques were used to randomly select three out of the five 
townships, ten out of 48 administrative villages and in these, half of all ‘natural villages’ were 
selected.  In each ‘natural village’ all households were visited, which altogether included 
around 2000 eligible women. Of these, 1503 were at home at the time of our visit. 
       All women who were at home at the first visit agreed to participate in the study, after 
having been explained the purpose and that they were free to decline. The interviews were 
conducted in the women's home by female health workers from the area, with extensive 
experience from previous surveys. We used pre-coded questionnaires including details on 
marriage, births, abortions, contraceptive use, the woman’s education and occupation and 
husband’s age. In the present study, the events of interest are first marriage, and first-, second, 
and third births, along with their timing and sociodemographic correlates.  The interviews 
were reviewed each day-by the research supervisors and checked for internal consistency. 
After cleaning the data set, checking for missing values and internal inconsistencies, 1326 
cases remained out of the 1503. 
 
3.2   Background of the Study Area 
 
Huaning is a mountainous area located in the southeast part of Yunnan. When the one-child 
policy was introduced in 1979, Yunnan was one of the poorest provinces in China. It had a 
lower life expectancy at birth, a higher total fertility rate, higher percent of third or higher 
parity births and higher crude birth rate compared to China as a whole (Banister 1987; Li 
1990; Bignami-Van Assche 2003; UNESCAP 2004). The family planning program in Yunnan 
during the 1970s was basically on a pilot work level, but the crude birth rate dropped from 38 
per 1000 in 1971 to 32 in 1976. When the one-child policy was launched, the provincial 
natural rate of increase of 19 per 1000 was considered unacceptably high and family planning 
organizations were expanded. In 1984, the program was gradually applied to the whole 
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province. In 1990, the crude birth rate had dropped to 23.60, and in 2000 it had dropped 
further to 20.00, but still higher than the national averages (17.50 in 1990 and 16.00 in 2000) 
(UNESCAP 2004). 
 
3.3   Correlates of Birth-Spacing 
 
We now fit the models discussed in section 2 above to our data set on interval lengths to study 
the distributional shape of these intervals, discriminate among special-case models. , and 
identify potential correlates of birth-spacing. Related questions concern the dependence of 
inference about these correlates on the distributional shape of the duration variable (birth 
intervals), and the dependence of model choice on the order of birth interval.  
   The main dependent variables for this analyses are transition times to marriage, to 
motherhood, as well as to 2nd and 3rd births, all measured in months. For comparison 
purposes, we shall also fit the Cox model (1) in which the dependent variable is the birth rate 
(or marriage rate) at a given time. Generally, differences in birth intervals can be explained 
through demographic, socio-economic and socio-cultural factors. On the basis of previous 
work (Löfstedt, Ghilagaber, Shusheng, and Johansson, 2005; Löfstedt, Ghilagaber, and 
Johansson, 2005), we have selected an array of theoretically relevant variables as likely 
covariates of birth intervals. These include ethnicity, religion, maternal education and 
occupation, mother’s birth cohort and marriage cohort, age at first marriage, survival status of 
the index child, and sex (or sex composition) of previous child(ren).  
   A cohort is indicative of structural factors that have shaped the life of individuals.  At the 
macro level, similar life experiences can be detected among women belonging to the same 
cohort despite subtle micro level differences.  Given the changing contextual factors affecting 
reproduction in rural China, we expect the younger cohorts, who became adolescents in a 
period of a more egalitarian gender role, efficient contraceptives, and higher female 
enrolments in formal education, to have longer intervals than older cohorts. 
   Age at first marriage is also of tremendous importance in fertility studies because of its 
inverse relation to the exposure to the risk of conception (see, e.g., Gyimah, 2003; Westoff, 
1992).  It also represents a number of unmeasured factors that predispose women to 
differential timing of births and, thus, overall fertility. Women who marry at younger ages are 
likely to come from disadvantaged socio-economic backgrounds and are thus more likely to 
be associated with higher risks of births than their counterparts whose first marriages occurs 
late (Gyimah, 2001).  Consequently, we expect women who marry early to be associated with 
shorter intervals. 
   Also significant in determining the length of the inter-birth interval is the survival status of 
the index child (Montgomery and Cohen, 1998; Preston, 1978). It has been demonstrated that 
intervals following the death of the index child tend to be significantly shorter than intervals 
where the child survived, a result of biological and behavioural processes (Gyimah and 
Fernando, 2002). We thus expect the death of the index child to be associated with shorter 
intervals.  Sex of previous child or sex composition of first two children is also important 
particularly in societies like rural China where son preference is strong. Thus, we would 
expect woman whose first (or first two) births resulted in girl(s) to move faster to the next 
parity than their counterparts whose first birth(s) results in at least one boy. 
   There is also considerable empirical evidence that associates high levels of maternal 
education with low fertility. The pathways through which these happen have been explained 
through an array of mechanisms including late age at marriage, greater knowledge and access 
to contraception, high labour force participation and alternative values regarding family size 
(Cochran, 1979; 1983; Martin, 1995; Ware 1984).   
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3.4 Descriptive results 
 
There were 1326 usable records of women of which 1101 (83%) were married by interview 
time while the rest 225 (17%) were still single and treated as censored. Of the married 
women, 1052 (97%) have borne their first child while the rest were with zero-parity at 
interview time. Further, of the 1052 women with at least one child, 792 (75%) have proceeded 
to 2nd child, while the rest 262 (25%) were still single-parity women by the survey time. 
Finally, 534 (68%) of the parity-two women have had a 3rd child while the rest 254 (32%) 
were still at parity two. Table 1 presents a cross tabulation of frequencies of the various events 
of interest across the relevant covariates.2  
 
3.5 Covariate effects 
 
In Tables 2 - 5, we report results of fitting models (1) and (8) to the data on transitions to 
marriage, first birth, second birth, and third birth, respectively. In each table, the estimated 
coefficients in the first seven columns under ‘parametric models’ come from fitting the model 
in (8), as well as the log-logistic model and, hence, represent effects of the respective levels of 
a factor on log-interval (that of baseline level is set to 0.000 by design). Estimates given in the 
column 8 (labelled Cox) are related to model (1) and, as such, measure the effect of the 
covariates on the log-intensity of transition to marriage or to the next higher parity (birth 
intensity). The last column is just relative intensities (intensity ratios, or hazard ratios) 
obtained by exponentiating the estimates in the Cox model.  
   It may be worth noting that the shape and scale parameters are free (estimated from the 
data) in the more comprehensive EGG model, while in the five special case-models, one or 
both of these parameters are set to some fixed value(s) as discussed in Section 2. 
According to Table 2, for example, the factors that significantly extend the time to marriage 
(decrease the intensity of marriage) are having some education, and belonging to the younger 
birth cohort. Such results are reported by most models though the reciprocal Weibull model 
also show some ethnic and religious differentials while the exponential model is more 
conservative with respect to the cohort-effects. We shall examine, later, if these models have 
adequate goodness of fit.  
   The effects of the various covariates on transition to 1st, 2nd, and 3rd births are shown in 
Tables 3, 4, and 5, respectively. According to Table 3, those who marry older (at or after 20 
years of age) have shorter durations to first birth (after marriage) as compared to those who 
marry as teenagers. Further, the younger the marriage cohort the shorter the interval between 
marriage and first birth. Lastly, women who are younger than their husbands by at least two 
years get their first child faster (after marriage) as compared to those women who are at least 
as old as their husbands. These findings are consistently reported by almost all models though 
they differ slightly in the strength of the effects and that the reciprocal Weibull model 
indicates some ethnic differentials.  
   In Table 4, the only important factors are age at marriage and date of 1st birth. Women who 
married older and those who got their first child after 1985 seem to postpone their 2nd births, 
while those who got their first child in the first half of the 1980s have shorter intervals to 2nd 
birth (after first birth). The results for those who got their first child after 1985 may, however, 
                                                            
2  In Table 1, 79 of the 1101 women who made transition to marriage were excluded because they either had 
unknown values on some variables related to first birth (49 cases) or their first child was conceived or born 
before they married (30 cases). As a result, the usable records of women for the analyses of first birth was only 
1022. However, the 30 women who conceived or borne their first child before marriage were included in the 
analysis of 2nd births, giving rise to 1052 usable records. 
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be partly explained by the fact that a number of these woman who married around the survey 
time may not have yet reached to the stage of giving rise to a 2nd child.  
   Table 5 shows that women with some education postpone 3rd births relative to those with 
no education. Those who married older, got their 2nd child after 1980, or already have at least 
one son among their first two children also tend to postpone 3rd births relative to their 
counterparts. On the other hand, women who lost their 2nd baby tend to replace it 
immediately. Again, these results are reported consistently by three models (EGG, reciprocal 
Weibull and “Gamma” models) while the other models deviate somehow. Below, we outline 
procedures to demonstrate, among other things, that the first set of models are equally 
adequate in explaining variations across durations to 3rd birth.  
 
3.6 Discrimination among parametric models 
 
When parametric models are nested, likelihood ratio tests can be used to assess the best fit 
model (Heckman and Walker, 1991; Allison, 1995).  The likelihood-ratio statistics (and 
associated p-values) corresponding to various tests for special cases of the EGG model (8) are 
presented in the last 2 rows of Tables 2 – 5. These are used to test whether the corresponding 
special-case model is adequate enough relative to the more comprehensive EGG model.  
The results for marriage (Table 2), for instance, show that all special cases are rejected in 
favour of the more general EGG model. This is in accordance with the estimated value of the 
shape parameter (0.397) under the EGG model. This estimate is closer to the assertion of the 
log-normal where the shape parameter is fixed to 0 than to any value set by the other 
alternative distributions. The question is whether or not this value is statistically different 
from 0. A simple guide is to standardise it through dividing it by its standard error (not shown 
in Table 2): 0.397/0.056 = 7.12, which is by far larger than any table value in the standard 
normal distribution. Thus, the estimated shape parameter (0.397) is significantly different 
from 0. In fact the value of the Chi-square statistic reported at the bottom of Table 2 
(corresponding to the log-normal column) is the square of this standardised value (7.12**2 = 
51).  The same is true in Table 3 - all special case distributions are rejected in favour of the 
EGG model. Once again, the log-normal model is the closest to the EGG model, and this is 
consistent with the estimate of the shape parameter under the EGG model (0.136) which is 
closest to 0. But how close should it be to zero? Again, a standardisation (0.136/0.055 = 2.47) 
shows that it is marginally different from 0 at 5% significance level, but not at 1% level of 
significance. Note again that the square of this value (2.47**2 = 6.10) is equal to the 
corresponding value of the Chi-square as reported in Table 3 where the marginality of the 
significance is shown by the small p-value (0.013). 
   The results for 2nd birth (Table 4) also show that the EGG model is the most parsimonious 
model. The estimate of the shape parameter (-0.317) is close to 0 (suggesting a log-normal 
model), but again it is significantly different from zero (-0.317/0.070 = -4.51) and that  
(–4.51)**2 = 20.30 is equal to the corresponding value of the Chi-square shown in Table 4 
(save some round-off errors).   
   A different picture is shown in Table 5 which reports results related 3rd births. Here, the 
reciprocal-Weibull and the “Gamma” models are as adequate as the parent EGG model in 
explaining variations in 3rd birth intervals. As a result, one can save one degree of freedom by 
fixing the shape parameter to –1 or the scale parameter to 1. This is shown by the insignificant 
Chi-square statistics corresponding to these models as shown at the bottom of Table 5 (0.218 
with a p-value of 0.641, and 0.162 with a p-value of 0.687, respectively).  
   The equivalence of these three models is also clearly indicated by the estimated shape and 
scale parameters in the EGG model in Table 5. The estimated shape parameter, -1.10, is very 
close to –1 (corresponding to the assertion of the reciprocal-Weibull model) while the 
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estimated scale parameter, 1.02 is close to 1 (corresponding to the assertion of the “Gamma”). 
The tests outlined above also indicate that these values are close enough to their asserted 
values.  
   Table 6 contains a summary of the different models under the null and alternative 
hypotheses and the corresponding Chi-square statistics (Likelihood Ratio Tests) together with 
their associated p-values. 
 
3.7     Determinants of time-to-marriage and child-spacing 
 
As we noted in the above section(s) the most adequate model for a given set of duration data 
depends on the specific data set at hand. Thus, for our data set, the EGG model is the most 
parsimonious model for marriage duration and durations between 1st and 2nd births. On the 
other hand, the reciprocal Weibull and “Gamma” models are as adequate as the EGG model 
in explaining variation across durations between 2nd and 3rd births. Lastly, the log-normal 
model is marginally close to the EGG model in explaining variations across duration between 
marriage and 1st birth.  
   More importantly, we have noted that inferences concerning covariate effects on a given 
time variable depend on model choice. We have, for instance, found, in Table 4, that the 
number of variables with significant effect on the 2nd birth interval and their strength differs 
between the columns of the EGG and the Weibull models.  
   In Table 7, therefore, we have provided a summary of the results for the four intervals, all 
obtained from the EGG model in order to facilitate comparisons. Although the number and 
type of covariates included in the models are not the same across the four intervals, some 
general comparisons can be attempted.  
   We note, from Table 7, that women from younger birth cohorts and those with some 
education tend to postpone marriage. Women with some education do not, however, seem to 
compensate for this late marriage by shortening the interval to first birth after marriage. The 
category of women who tend to shorten the time to first birth are those who married older, 
belong to the younger marriage cohorts (specially after 1980) and those who are “too 
younger” than their husbands (younger by at least two years). Those who married at age 24 or 
older, and those who got their first child after 1985 also postpone 2nd births. Postponement of 
3rd births is also common among those who married old and those who got their 2nd child 
after 1980. Education does not seem to be important for time to the first two births, while it 
shows a significant association with time to 3rd birth. Women with some education tend to 
postpone 3rd birth.  Women who married older, those who got their 2nd child after 1980, and 
those with at least one son among their first two children also have longer durations to 3rd 
birth, while those who lost their 2nd child seem to replace it shortly.   
 
3.8  Hazard model or duration model? 
 
The main goals in the analyses of survival (duration) data are: to describe the distribution  of 
the time (duration) variable, to compare the survival experiences (distributions) of different 
groups of a population, and to investigate explanatory variables that could affect the survival 
(duration).  The survival experience of a given group of individuals is often described by three 
different but equivalent functions: the density function, denoted by f(t), from which the 
probability of experiencing the event of interest within a given interval of time is obtained; 
the hazard function, denoted by λ(t), which is the instantaneous rate at which the event of 
interest occurs; and the survivor function, denoted by S(t), which is the probability of 
surviving beyond time t (not experiencing the event of interest until time t). These functions 
are computed for our specific data set and shown in Figures 1, 2, and 3, respectively. The 
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figures clearly indicate that the four time intervals under study do not have the same form of 
distribution – something worth considering while fitting some model to the data sets.  
   Further, as described earlier hazard-rate models measure the quantum of the event under 
investigation (marriage or child-birth in our present case) and express the rate of occurrence 
of such event as a function of some covariates. In duration models (accelerated failure time 
models), on the other hand, the interest is the tempo of the event and, thus, the dependent 
variable is the duration of the event.  
   The most popular hazard-rate model is the Cox proportional hazards model (Cox, 1972; 
1975). This model leaves the baseline hazard in Equation (1) unspecified. This is a very 
attractive property and it is mainly for this reason that almost all investigators in the applied 
sciences feel comfortable in using this model for their data analytic purposes. 
   However, not many investigators care of what is behind the scene – namely the assumption 
of proportional hazards across the various levels of a covariate. For instance, a proportional 
hazards assumption across the three levels of Education (None, Compulsory or less, Above 
Compulsory, in  our data set) would mean that the hazard functions of these levels would look 
like what is shown in Figure 4. A plot of the actual hazard functions for our data set, however, 
is what is shown in Figure 5. A comparison of Figures 4 and 5 shows that the assumption of 
proportional hazards is violated for the covariate Education. Is it then advisable to use the Cox 
proportional hazards model in such circumstances? While there are some studies that indicate 
that the model is robust to modest violations of the assumption, the current authors are of the 
opinion that one should resort to the more appealing alternative models described in this 
paper. 
 
3.9  Are Inferences Sensitive to Model-Choice? 
 
In order to compare the results from our duration models with those obtained from the Cox 
PH model, we have also reported results from fitting the Cox model (1) in each of the tables 
in the Appendix. As indicated earlier (see footnote 1), a positive effect in the duration models 
should imply a negative effect (and hence a relative hazard that is less than 1) in the hazard 
models (and vice-versa). A closer look at Table 6 shows that this is the case in most, but not 
in all, the comparable pair of columns. Even when the directions of the effects are in the 
expected directions, there are situations where the strength of effects of some covariates 
differs across the two sets of models. In situations when they are not compatible, we 
recommend that inferences be based on the results from the appropriate duration model 
because there is at least a statistical evidence supporting the choice of such models. 
 
4.    Summary 
 
A natural question arises as to which model to fit or which procedure to use when one is 
confronted with a specific data-analysis problem. As with most statistical or demographic 
methods, it is rather difficult to codify the procedures involved in choosing a model. There are 
many factors, such as mathematical convenience, theoretical appropriateness, and empirical 
evidence that should legitimately enter the decision and none can be easily quantified.  
Given the wide range of fertility models in the literature, it is worth asking whether 
conclusions are sensitive to the particular model chosen. The answer to this question is 
unknown until results obtained with one method have been compared to those obtained by 
another method. Such comparisons have been one of the objectives of the present paper. Our 
empirical results indicate that the distributional shape of birth intervals is different depending 
on whether we refer to the first or higher-order birth intervals. More importantly, our results 
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demonstrate that inferences concerning covariate effects on birth intervals are sensitive to the 
choice of the distributional shape. 
   In sum the results indicate that the choice of the appropriate distribution of birth intervals is 
of crucial importance in order to make valid inference and, thereby, suggest sound and 
effective policy interventions. This paper has outlined a statistically well grounded, 
theoretically appropriate, and empirically evident procedure on how to identify the most 
appropriate model for a given data set on duration times. Based on such procedure, we have 
also identified determinants of time-to-marriage and child-spacing in a remote county of rural 
China.  
   This study is, however, not without limitations. Unlike death, the events studied in this 
paper (marriage and childbearing) are not certain events to all individuals in the long run – 
there may be long-term survivors in the sense of Maller & Zhou (1996). Accordingly, 
alternative models that allow for this feature, such as Li and Choe (1997), Yamaguchi (2003), 
or Land, Nagin, and McCall (2001), could be appropriate. It is our ambition to address this 
issue in the near future. At this stage, however, we believe that such long-term survivors, if 
any, are too few in the context of our study that failure to address them does not bring about 
any substantial differences in our results.  
   Meanwhile, it is our hope that the findings in this paper bring into the surface the 
importance of how to specify duration phenomena. This, in turn, is expected to motivate 
researchers to look for stronger links between the underlying reality and the models we 
present. One such issue is to investigate what behavioural or biological processes are better 
represented by one model than another and what sorts of bias would one expect to observe in 
estimated effects if those processes are not appropriately modelled.    
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Table 1: Summary Statistics of Variables for the Different Transitions

Marriage First Birth Second Birth Third Birth
N %  event N %  event N %  event N %  event

Ethncity
 Han 1200 83 926 98 952 76 718 32
 Yi 87 90 69 94 73 73 52 29
 Other 39 74 27 93 27 67 18 33
Religion
 No Religion 1208 82 919 97 937 73 680 28
 Budha 74 97 65 100 74 95 70 67
 Don't know 44 95 38 95 41 93 38 37
Education
 None 157 97 137 100 152 94 143 71
 Compulsory 1103 82 851 97 865 72 623 24
 Above complusory 66 62 34 94 35 66 22 9
Occupation
 Farm 1279 83 984 97 1014 76 762 32
 Non-farm 47 74 37 97 38 68 26 42
Birth cohort
 1936-40 31 100 - - - - - -
 1941-45 35 100 - - - - - -
 1946-50 72 100 - - - - - -
 1951-55 124 100 - - - - - -
 1956-60 81 99 - - - - - -
 1961-65 173 100 - - - - - -
 1966-70 234 100 - - - - - -
 1971-75 238 93 - - - - - -
 1976-80 226 57 - - - - - -
 1981-85 112 2 - - - - - -
Age at Marriage 153 99 286 90 257 59
 Before 20 years - - 307 96 349 74 258 24
 20-21 - - 407 98 262 69 179 16
 22-23 - - 155 94 155 61 94 11
 24 years and above - -
Marriage cohort
 Before 1970 - - 124 100 109 99 134 93
 1970-79 - - 150 100 176 98 161 69
 1980-84 - - 106 100 107 98 110 10
 1985-00 - - 642 95 660 62 383 2
Age difference with spouse
 Wife older - - 104 95 - - - -
 Same age - - 239 97 - - - -
 Husband 2-4 yrs older - - 423 97 - - - -
 Husband 5+years older - - 256 99 - - - -
Introduction
  Self - - 448 96 - - - -
  Parents/ friends - - 180 98 - - - -
 Match maker - - 394 98 - - - -
Sex of First child
 Boy - - - - 550 76
 Girl - - - - 502 75
Sex of 1st & 2nd child
 Two girls - - - - 190 45
 One each - - - - 394 28
 Two boys - - - - 204 29
Survival Status of first child
 Alive - - - - 1030 75 780 32
 Dead - - - - 22 100 8 88

TOTAL 1326 83 1022 97 1052 75 788 68

See also footnote 2 in Section 3.4 of the text for further details on Table 1
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Table 2: Estimated Effects of Covariates on Log Duration to Marriage (months after age 15) and on the Log Hazard of Marriage

Constant 4.031*** 3.450*** 3.851*** 4.299*** 3.838** 4.030*** 3.867*** . .
Scale parameter 0.378*** 0.516 0.404 0.363 1.000 1.000 0.214 . .
Shape parameter 0.397*** -1.000 0.000 1.000 -0.073 1.000 - . .
Ethncity
 Han (reference) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000
 Yi 0.042 0.034 0.031 0.471 0.004 0.019 0.265 -0.159 0.853
 Other -0.047 -0.290*** -0.017 -0.057 -0.095 -0.061 -0.042 0.043 1.044
Religion
 No Religion (reference) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000
 Budha -0.079* -0.095 -0.074 -0.083* -0.067 -0.074 -0.089* 0.194 1.214
 Don't know -0.083 0.018 -0.052 -0.134** -0.055 -0.093 -0.038 0.309 1.362*
Education
 None (reference) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000
 Compulsory 0.117*** 0.262*** 0.162*** 0.029 0.162* 0.111 0.165*** -0.272 0.761***
 Above complusory 0.362*** 0.483*** 0.417*** 0.247*** 0.511** 0.493*** 0.412*** -0.930 0.394***
Occupation
 Farm (reference) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000
 Non-farm 0.018 0.104 0.019 0.005 0.036 0.028 0.037 -0.048 0.953
Birth cohort
 1936-40 (reference) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000
 1941-45 -0.197** -0.430*** -0.161*** -0.319*** -163.000 -0.194 -0.088 0.970 2.637***
 1946-50 -0.070 0.175 0.011 -0.181** 0.019 -0.063 0.019 0.558 1.747***
 1951-55 0.134* 0.291*** 0.174*** 0.081 0.176 0.136 0.166** -0.228 0.796
 1956-60 0.308*** 0.494*** 0.349*** 0.330*** 0.355* 0.317 0.339*** -0.545 0.579**
 1961-65 0.283*** 0.518*** 0.355*** 0.212*** 0.355* 0.284 0.350*** -0.481 0.618**
 1966-70 0.376*** 0.575*** 0.442*** 0.274*** 0.450** 0.377* 0.437*** -0.719 0.487***
 1971-75 0.344*** 0.457*** 0.413*** 0.250*** 0.447** 0.398* 0.409*** -0.674 0.509***
 1976-80 0.332*** 0.602*** 0.427*** 0.228*** 0.660*** 0.724*** 0.384*** -0.607 0.545***
 1981-85 0.526*** 0.716*** 0.543**** 0.716*** 1.648*** 3.307*** 0.507*** -1.596 0.203**

Log Likelihood -623 -898 -649 -675 -1181 -1291 -602

Chi-square (df) - 549.226 51.768 102.784 1114.382 1335.322 -
p-value - 0.000 0.000 0.000 0.000 0.000 -

Notes: Number of women=1326; Number of Events (Marriages)=1101 (83%); Censored cased=225 (17%)
 *indicates the corresponding effect is statistically significant at 10%, ** indicates significance at 5%; *** indicates significance at 1%.

COVARIATES Extended 
Generalized 

Gamma

Reciprocal 
Weibull Log Normal Coefficient Hazard Ratio

PARAMETRIC  MODELS (Effects on Log Duration) Cox PH Model (Effects on 
Log hazard)

Weibull Gamma Exponential Log logistic
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Table 3: Estimated Effects of Covariates on Log Duration Between Marriage and First Birth and on the Log Hazard of First Birth

Constant 3.335*** 2.942*** 3.261*** 3.899*** 3.279*** 3.684*** 3.205*** . .
Scale parameter 0.667*** 0.785 0.672 0.699 1.000 1.000 0.349 . .
Shape parameter 0.136* -1.000 0.000 1.000 0.04 (0.07) 1.000 - . .
Ethncity
 Han (reference) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000
 Yi -0.030 0.106 -0.015 -0.137 -0.014 -0.089 -0.014 0.100 1.105
 Other 0.125 0.310** 0.144 -0.013 0.154 0.066 0.162 -0.118 0.889
Religion
 No Religion (reference) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000
 Budha 0.045 -0.113 0.041 0.024 0.042 0.036 0.097 -0.032 0.969
 Don't know -0.079 -0.241* -0.093 -0.009 -0.081 -0.014 -0.073 0.065 1.067
Education
 None (reference) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000
 Compulsory -0.035 -0.077 -0.046 0.057 -0.041 0.027 -0.062 0.021 1.021
 Above complusory 0.082 0.234 0.091 0.060 0.102 0.087 0.051 -0.083 0.920
Occupation
 Farm (reference) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000
 Non-farm -0.003 0.129 0.003 -0.021 -0.001 -0.020 -0.024 0.001 1.001
Age at Marriage
 Before 20 years (reference) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000
 20-21 -0.258*** -0.381*** -0.270*** -0.280*** -0.261** 0.257** -0.240*** 0.298 1.347***
 22-23 -0.321*** -0.252*** -0.320*** -0.340*** -0.321*** -0.340*** -0.333*** 0.456 1.578***
 24 years and above -0.432*** -0.537*** -0.440*** -0.420*** -0.435*** -0.420*** -0.420*** 0.528 1.695***
Marriage cohort
 Before 1970 (reference) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000
 1970-79 -0.135* -0.097 -0.128 -0.179*** -0.130 -0.166 -0.132* 0.168 1.183
 1980-84 -0.315*** -0.294*** -0.300*** -0.450** -0.301** -0.410*** -0.260*** 0.422 1.525***
 1985-00 -0.376*** -0.270*** -0.350*** -0.530*** -0.344*** -0.480*** -0.320*** 0.573 1.774***
Age difference with spouse
 Wife older (reference) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000
 Same age -0.101 -0.107 -0.082 -0.370*** -0.088 -0.250** -0.041 0.228 1.256*
 Husband 2-4 yrs older -0.167** -0.184** -0.154* -0.380*** -0.159 -0.280** -0.098 0.254 1.290**
 Husband 5+years older -0.307*** -0.253*** -0.290*** -0.570*** -0.295** -0.460*** -0.240*** 0.456 1.578***
Introduction
  Self (reference) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000
  Parents/ friends 0.080 0.028 0.770 0.072 0.076 0.078 0.073 -0.104 0.901
 Match maker 0.080 0.039 0.081 0.081 0.080 0.077 0.078* -0.099 0.906
Log Likelihood -1020 -1198 -1023 -1124 -1145 -1232 -971
Chi-square (df) - 355.97 6.13 207.61 249.83 423.29 -
p-value - 0.000 0.013 0.000 0.000 0.000 -

Notes: Number of women=1080; Number of First Births=1050 (97%); Censored cased=30 (3%)
Notes: *indicates the corresponding effect is statistically significant at 10%, ** indicates significance at 5%; *** indicates significance at 1%.

COVARIATES Extended 
Generalized 

Gamma

Reciprocal 
Weibull Log Normal Coefficient Hazard Ratio

PARAMETRIC  MODELS (Effects on Log Duration) Cox PH Model (Effects on 
Log hazard)

Weibull Gamma Exponential Log logistic
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T able 4: Est imated Effect s of Covariat es on Log Durat ion Between First  and Second Birth and on the Log Hazard of Second Birth

Constant 3.375*** 3.248*** 3.436*** 3.675*** 3.398*** 3.555*** 3.433**** . .

Scale parameter
0.555 (.01) 0.565(.01) 0.560(.01) 0.699(.01) 1,000 1,000 0.300(.00)

. .
Shape parameter -0.317 (.07) -1,000 0,000 1,000 -0.310(.08) 1,000 - . .
Eth n ci ty
 Han (reference) 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 1,000
 Yi 0,051 0,064 0,044 0,021 0,055 0,031 0,049 -0,044 0,957
 Other 0,136 0,130 0,154 0.312** 0,164 0,263 0,095 -0,284 0,753
Re l igion
 No Religion (reference) 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 1,000
 Budha 0,071 0.150** 0,046 -0,003 0,059 0,019 0,020 -0,035 0,966
 Don't  know 0,103 0.1933** 0,065 -0,024 0,046 -0,063 0,068 -0,054 0,947
Edu cation
 None (reference) 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 1,000
 Compulsory 0,072 0,442 0.092* 0.302*** 0,085 0.199** 0,060 -0,179 0.836*
 Above complusory 0,010 -0,103 0,078 0.532*** 0,034 0,352 0,001 -0,187 0,829
O ccu pation
 Farm (reference) 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 1,000
 Non-farm -0,075 -0,032 -0,098 -0.246** -0,078 -0,165 -0,032 0,157 1,170
Age  at Marriage
 Before 20 years (reference 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 1,000
 20-21 -0,002 -0,006 0,006 -0,010 0,008 0,022 0,005 -0,064 0,938
 22-23 0.105* 0.104* 0.119** 0.192*** 0,126 0.198* 0.094* -0,237 0.789**
 24 years and above 0.141** 0.112* 0.162** 0.243*** 0.196* 0.286** 0.153*** -0,327 0.721***
First ch i ld birth  ye ar
 Before 1970 (reference) 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 1,000
 1970-79 -0.117* -0.172** -0,960 -0,061 -0,110 -0,060 -0.117* 0,178 1,195

 1980-84 -0.250*** -0.233*** -0.262*** -0.375*** -0.267* -0.335** -0.248*** 0,480 1.616***
 1985-00 0.251*** 0.234*** 0.246*** 0,020 0.338*** 0.294** 0.303** -0,457 0.633***
S e x of First ch i ld
 Boy (reference) 0,000 -0,008 0,000 0,000 0,000 0,000 0,000 0,000 1,000
 Girl 0,011 -0,107 0,016 0,024 0,019 0,032 0,014 -0,065 0,937
S u rvival  S tatu s  of fi rs t ch i ld
 Alive (reference) 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 1,000
 Dead -0,141 -0.204* -0,114 -0,146 -0,170 -0,169 -0,043 0,104 1,110
Log Likelihood -768 -808 -779 -944 -959 -1090 745
Chi-square (df) - 79,91 21,46 352,06 383 644 -
p-value - 0,000 0,013 0,000 0,000 0,000 -

Notes: Number of women=1050; Number of Second Births=792 (75%); Censored cases=262 (25%)
Notes: *indicates the corresponding ef fect is statistically signif icant at 10%, ** indicates signif icance at 5%; *** indicates signif icance at
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T able 5: Est imated Effect s of Covariates on Log Durat ion Between Second and T hird Birth and on the Log Hazard of T hird Birth

Const ant 2.780*** 2.816*** 3.124*** 3.493*** 2.763*** 3.533*** 3.212*** . .
Scale parameter 1.02(.05) 1.03(.05) 1.11(.05) 1.08(.05) 1,000 1,000 0.59(.03) . .
Shape parameter -1.10(.09) -1,000 0,000 1,000 -1.14(.09) 1,000 - . .
Eth n ci ty
 Han (reference) 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 1,000
 Yi -0,290 -0,302 -0,359 -0,283 -0,285 -0,268 -0.443* 0,472 1.603*
 Other 0,249 0,211 -0,154 -0,538 0,267 -0,547 -0,147 0,185 1,203
Re l igion
 No Religion (reference) 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 1,000
 Budha 0,271 0.264* 0,099 -0,097 0.273* -0,102 0,062 0,008 1,008
 Don't  know 0,175 0,155 -0,042 -0,220 0,184 -0,227 -0,098 0,162 1,176
Edu cation
 None (reference) 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 1,000
 Compulsory 0.409*** 0.402*** 0.335** 0.342** 0.410*** 0.339** 0.229* -0,187 0,829
 Above complusory 0.630* 0.612* 0,502 0,493 0.635* 0,497 0,297 -0,420 0,657
O ccu pation
 Farm (reference) 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 1,000

 Non-farm -0,221 -0,237 -0,491 -0.894*** -0,213 -0.903*** -0.482* 0,755 2.128**
Age  at Marriage
 Before 20 years (reference) 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 1,000
 20-21 0.196* 0.199* 0,214 0,206 0.194* 0,194 0,117 -0,125 0,882
 22-23 0,007 0,010 0,045 0,002 0,007 -0,005 0,091 -0,050 0,951
 24 years and above 0.406** 0.404** 0,362 0,181 0.405** 0,153 0,316 -0,208 0,812
S e con d ch i ld bi rth  ye ar
 Before 1970 (reference) 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 1,000
 1970-79 0,100 0,105 0,216 0.369** 0,098 0.364** 0,152 -0,265 0.767*
 1980-84 0.510*** 0.568*** 1.233*** 1.723*** 0.479*** 1.658*** 1.452*** -1,390 0.249***
 1985-00 2.183*** 2.235*** 2.926*** 4.382*** 2.144*** 4.067*** 3.129*** -4,240 0.014***
S e x of 1st & 2n d ch i ld
 T wo girls (reference) 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 1,000
 One each 0.409*** 0.405*** 0.418*** 0.523*** 0.411*** 0.510*** 0.305** -0,307 0.7356**
 T wo boys 0.451*** 0.436*** 0.394** 0.435** 0.456*** 0.421** 0.306** -0,327 0.721*
S u rvival  S tatu s  of 2n d ch i ld
 Alive (reference) 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 1,000
 Dead -1.583*** -1.532*** -0.913** -0,691 -1.602*** -0.691* -0,566 0,585 1,795
Log Likelihood -483 -483 -494 -531 -483 533 -484
Chi-square (df) - 0,218 22,77 97 0,162 100
p-value - 0,614 0,000 0,000 0,687 0,000

Notes: Number of women=788; Number of T hird Births=534 (68%); Censored cases=254 (32%)
Notes: *indicates the corresponding ef fect is statistically signif icant at 10%, ** indicates signif icance at 5%; *** indicates signif icance at 1%.
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Shape = -1 Reciprocal Weibull Extended Generalized Gamma 549.22 (0.000)
Shape = 0 Log-normal Extended Generalized Gamma 51.78 (0.000)
Shape = 1 Weibull Extended Generalized Gamma 102.78 (0.000)
Scale=1 Ordinary Gamma Extended Generalized Gamma 1114 (0.000)
Scale = 1 and Shape =1 Exponential Extended Generalized Gamma 1335.32 (0.000)
Scale =1, given Shape =1 Exponential Weibull 1232.53 (0.000)

Shape = -1 Reciprocal Weibull Extended Generalized Gamma 355.97 (0.000)
Shape = 0 Log-normal Extended Generalized Gamma 6.13 (0.013)
Shape = 1 Weibull Extended Generalized Gamma 207.61 (0.000)
Scale=1 Ordinary Gamma Extended Generalized Gamma 249.84 (0.000)
Scale = 1 and Shape =1 Exponential Extended Generalized Gamma 423.29 (0.000)
Scale =1, given Shape =1 Exponential Weibull 215.68 (0.000)

Shape = -1 Reciprocal Weibull Extended Generalized Gamma 79.90 (0.000)
Shape = 0 Log-normal Extended Generalized Gamma 21.46 (0.000)
Shape = 1 Weibull Extended Generalized Gamma 352.06 (0.000)
Scale=1 Ordinary Gamma Extended Generalized Gamma 383.09 (0.000)
Scale = 1 and Shape =1 Exponential Extended Generalized Gamma 644.72 (0.000)
Scale =1, given Shape =1 Exponential Weibull 292.66 (0.000)

Shape = -1 Reciprocal Weibull Extended Generalized Gamma 0.218 (0.641)
Shape = 0 Log-normal Extended Generalized Gamma 22.77(0.000)
Shape = 1 Weibull Extended Generalized Gamma 97.97 (0.000)
Scale=1 Ordinary Gamma Extended Generalized Gamma 0.162 (0.687)
Scale = 1 and Shape =1 Exponential Extended Generalized Gamma 100.88 (0.000)
Scale =1, given Shape =1 Exponential Weibull 2.91 (0.000)

Third Birth 
interval

Table 6:  Hypotheses and Corresponding Likelihood Ratio Statistics for Testing Special Case Model (Null Hypotheses) Against the 
More General (Alternative Hypothesis) Within the Parametric Family of Models for Time Marriage, First Birth, and Third Birth In

First Birth interval

Second Birth 
interval

Time to Marriage

Null Hypothesis Model under Null 
Hypothesis Model under Alternative Hypothesis Likelihood Ratio 

Statistic (p values)
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Table 7: Estimated Effects of Covariates on Log Duration to and Log Hazard of Various Events

Ethncity
 Han 0,000 0,000 0,000 0,000 1,000 1,000 1,000 1,000
 Yi 0,042 -0,030 0,051 -0,290 0,853 1,105 0,957 1.603*
 Other -0,047 0,125 0,136 0,249 1,044 0,889 0,753 1,203
Religion
 No Religion 0,000 0,000 0,000 0,000 1,000 1,000 1,000 1,000
 Budha -0.079* 0,045 0,071 0,271 1,214 0,969 0,966 1,008
 Don't know -0,083 -0,079 0,103 0,175 1.362* 1,067 0,947 1,176
Education
 None 0,000 0,000 0,000 0,000 1,000 1,000 1,000 1,000
 Compulsory 0.117*** -0,035 0,072 0.409*** 0.761*** 1,021 0.836* 0,829
 Above complusory 0.362*** 0,082 0,010 0.630* 0.394*** 0,920 0,829 0,657
Occupation
 Farm 0,000 0,000 0,000 0,000 1,000 1,000 1,000 1,000
 Non-farm 0,018 -0,003 -0,075 -0,221 0,953 1,001 1,170 2.128**
Birth cohort
 1936-40 0,000 - - - 1,000 - - -
 1941-45 -0.197** - - - 2.637*** - - -
 1946-50 -0,070 - - - 1.747*** - - -
 1951-55 0.134* - - - 0,796 - - -
 1956-60 0.308*** - - - 0.579** - - -
 1961-65 0.283*** - - - 0.618** - - -
 1966-70 0.376*** - - - 0.487*** - - -
 1971-75 0.344*** - - - 0.509*** - - -
 1976-80 0.332*** - - - 0.545*** - - -
 1981-85 0.526*** - - - 0.203** - - -
Age at Marriage
 Before 20 years - 0,000 0,000 0,000 - 1,000 1,000 1,000
 20-21 - -0.258*** -0,002 0.196* - 1.347*** 0,938 0,882
 22-23 - -0.321*** 0.105* 0,007 - 1.578*** 0.789** 0,951
 24 years and above - -0.432*** 0.141** 0.406** - 1.695*** 0.721*** 0,812
Marriage/child cohort -
 Before 1970 - 0,000 0,000 0,000 - 1,000 1,000 1,000
 1970-79 - -0.135* -0.117* 0,100 - 1,183 1,195 0.767*
 1980-84 - -0.315*** -0.250*** 0.510*** - 1.525*** 1.616*** 0.249***
 1985-00 - -0.376*** 0.251*** 2.183*** - 1.774*** 0.633*** 0.014***
Age difference with spouse
 Wife older - 0,000 - - - 1,000 - -
 Same age - -0,101 - - - 1.256* - -
 Husband 2-4 yrs older - -0.167** - - - 1.290** - -
 Husband 5+years older - -0.307*** - - - 1.578*** - -
Introduction - -
  Self - 0,000 - - - 1,000 - -
  Parents/ friends - 0,080 - - - 0,901 - -
 Match maker - 0,080 - - - 0,901
Sex of First child
 Boy - - 0,000 - - - 1,000 -
 Girl - - 0,011 - - - 0,937 -
Sex of 1st & 2nd child - - -
 Two girls - - 0,000 - - - 1,000
 One each - - 0.409*** - - - 0.736**
 Two boys - - 0.451*** - - - 0.721*
Survival Status of1st child -
 Alive - - 0,000 0,000 - - 1,000 1,000
 Dead - - -0,141 -1.583*** - - 1,110 1,795

Extended Generalized Gamma Models Cox PH Model (exp b)

Second Birth Third BirthMarriage First Birth Marriage First Birth Second Birth Third Birth
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Figure 2: Hazard functions of m arriage, first b irth , second birth , and th ird  b irth
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Figure 1: Density functions for Marriage, 1st birth, 2nd birth, and 3rd birth 
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Figure 3: Survival functions for marriage, first birth, 2nd birth, and 3rd birth
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F ig u re  4 :  H a z a rd  fu n c t io n  b y  e d u c a tio n a l le v e l (a s s u m in g  p ro p o rt io n a l h a z a rd s  fo r  th e  th re e  e d u c a tio n a l le v e ls )
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Figure 5: H azard  function  by educational level (as obtained from  the data)
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