
Population Review 
Volume 49, Number 2, 2010 

Type: Article pp. 13-26 
 

Non-parametric and Structured Graduation of Mortality Rates 
 

Authors: Víctor M. Guerrero and Eliud Silva 
Affiliations: Department of Statistics. Instituto Tecnológico Autónomo de México 

(ITAM), 01080 D. F., México, Mexico (Guerrero); Department of Statistics. Universidad 
Carlos III de Madrid, 28903 Getafe, Madrid, Spain (Silva) 

Corresponding author/address: Victor Guerrero: guerrero@itam.mx
 

 
Abstract 

 
In this article, we present a non-parametric method to estimate trends in mortality rates. This 
method combines goodness of fit and smoothness of the non-parametric approach with information 
from a given structural mortality rate. So, the user is able to control both smoothness and structure 
in the resulting estimated mortality. The main goal is to enable the analyst to compare mortality 
trends, with equal percentages of smoothness and structure established beforehand. Also, two 
perspectives of the proposed methodology are emphasized. On the one hand, the proper fit and 
smoothness and, on the other, the combination of two information sources, thus giving the analyst 
the possibility of choosing which one offers greater credibility. The usefulness of this approach is 
shown via empirical examples that employ different mortality indicators. 
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1. Introduction 
 
Population censuses, surveys and vital statistics, are susceptible to having flaws (or defects) in their 
records either by the presence of extraordinary events (earthquakes, floods, tornados, hurricanes, 
etc.) or, in general, by human errors of diverse types. As it is to be expected, such flaws have 
negative repercussions on demographic estimations. Particularly, the wrong recording of deaths 
distort – or misrepresent – the phenomenon under study, which can lead to an increase (or 
decrease) of its intensity and timing at a certain age, in detriment of another ones. This situation 
can affect timely decision making and policy creation, both in public and private sectors. One 
solution to solving this problem is graduating (smoothing) data. 
 
On the other hand, from an actuarial point of view, mortality plays a fundamental role for insurance 
companies, where it is important to estimate premium costs based on the risks taken. So, the 
predicted probability of dying must be sufficiently accurate so as to guarantee that, in the event of 
death, the amount of money to be paid to the insured party will be enough. Usually, data graduation 
is required to fulfil this requirement.  
 
In this work, we propose a methodology to estimate mortality trends that combines mortality 
demographic structure with fidelity to the original data and smoothness in such a way that the user 
is able to control both a smoothness percentage and a structure percentage. We emphasize that by 
applying this procedure, the user will be able to obtain comparable estimated trends. 
 
This article is organized as follows. In Section 2, we present several non-parametric models. These 
models have appeared in the related literature and are used to model mortality. Section 3 cites some 
demographic techniques in current use to project mortality. Section 4 deals with our 
methodological proposal, in which a signal-plus-noise mortality model is considered, together with 
two additional equations: one that allows inducing smoothness and another one to consider 
demographic structure. We introduce some smoothness and structure indexes in Section 5, where 
we also indicate how to use them in order to choose their associated smoothness and structure 
parameters. In Section 6 we illustrate the practical use of our proposed methodology by way of 
some applications to some observed mortality data. The final section concludes. 
 
2. Non-parametric models 
 
Haberman and Renshaw (1996) define graduation as the group of principles and methods by which 
observed probabilities are smoothed in order to carry out actuarial inferences and calculations. 
Graduation of mortality data can be done by means of parametric or non-parametric methods. In 
the first group, the objective is to fit a parametric function to the probabilities obtained directly 
form the observed data. In the second group, the actual data corresponding to death probabilities 
are smoothed and the assumption of an age-dependent function becomes unnecessary. The latter 
methods are more flexible and appropriate to use when graduation through parametric methods is 
difficult. It is in such a context that we suggest using our proposal. 
 
The underlying idea of graduation and smoothing is to reduce variability and facilitate the analysis 
of the observed data. To do so, the data are modified and turned into estimates, once unwanted 
fluctuations are excluded. Some non–parametric models of graduation are the graphical method, 
weighted moving averages, the kernel method and graduation with reference to standard mortality 
rates (Copas and Haberman, 1983; Papaioannou and Sachlas, 2004). Comparisons among non-
parametric models and smoothing by means of Generalized Additive Models with splines appear in 
Debón et al. (2006). Moreover, non-parametric models have also been used to yield estimates of 
old-age mortality (Fledelius et al., 2004). On the other hand, it should be mentioned that principal 
component approaches are usually employed to address the dimensionality problem by extracting 
age patterns from the data, while relational models replace the age scale by an empirically-derived 
exogenous standard (Booth and Tickle, 2008). 
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One of the most utilized techniques to perform graduation is the Whittaker-Henderson method, 
which results from minimizing the following function, for a given value of the constant λ>0,   

(v-u)’W(v-u)+λv’
'
dK dK v 

where u = (u1, …, un)’ is the vector of observed values, v = (v1, …, vn)’ is the vector of graduated 
values we are looking for, )w,...,diag(wW n1=  is a weighting matrix and dK  is an nd)(n ×−  

difference matrix, whose ij -element is given by ]i)!j(di)!/[(jd!1)(j)(i,K jid
d +−−−= −+

 for 
dn1,...,i −=  and n1,...,j = , with   0j)(i,K d =  for ij <  or idj +> . 

 
In the context of mortality rates, Guerrero et al. (2001) found that the best linear unbiased estimator 
of the smooth rates is Whittaker and Henderson’s solution to the graduation problem. In an 
economic context, on the other hand, Whittaker and Henderson’s method with d = 2, known as 
Hodrick and Prescott (HP) filter (see Hodrick and Prescott, 1997), is used to estimate trends in 
order to perform economic cycle analysis. The HP filter produces an estimate of the unobserved 
variable through the solution of the minimization problem  
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where tY  is the observed variable, 
*
tY  is the (unobserved) trend value  to be estimated, 

2
0σ  is the 

variance of the cycle component, { } YY *
tt − , and 

2
1σ  is the variance of the trend growth rate. The 

parameter 
2
1

2
0 σσλ =  serves to establish a balance between smoothness of the trend and its 

fidelity to the observed data.  
 
Laxton and Tetlow (1992) proposed an extension of the HP filter. They developed the Hodrick-
Prescott Multi-Variate (HPMV) filter as a tool to estimate unobserved variables, including relevant 
economic information, as well as smoothness. Thus, the corresponding filter is obtained by 
minimizing a function that takes into account the random errors from one or more economic 
relations involving unobserved variables. That is, the HPMV filter is used to estimate the 
unobserved variable 

*
tY  by solving the problem 
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for given values of 1λ  and 2λ . Note that this expression is similar to the one that produces the HP 
filter, but now it is extended with the errors ( tξ ) associated with the estimation of a given 
economic relation (Boone, 2000). 
 
3. Mortality forecasting: demographic techniques  
 
The Component Method (Cohort-Component Method) is the most frequently employed method to 
do demographic projections, both at the national level and for smaller geographic units. This 
method has undergone small changes since its initial proposal, but its essence is still preserved. In 
general terms, the method is used to study the future behaviour of demographic components 
separately: fertility, mortality and migration, within a determined horizon (George et al., 2004). 
 
To forecast mortality, the Component Method has different alternatives that allow making 
assumptions regarding the behaviour of mortality rates or other linked indicators. These 
assumptions can be grouped as follows: a) extrapolation techniques; b) techniques in which the 
mortality of an area or population is presumed in others; and c) structural models that consider 
changes in mortality rates due to changes in socioeconomic variables. For a) and b), some 
possibilities include the use of Auto-Regressive Integrated Moving Average (ARIMA) models as in 
Lee and Carter (1992); parametric models such as Makeham, Gompertz, and Helligman and 
Pollard laws, among others. Similarly, life tables from world areas can be used as a basis, among 
them model tables that present different mortality levels and structures; the logit function, and so 
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on. The first three options serve to interpolate death probabilities between the initial and final life 
tables chosen. In the last option, the initial logit life table varies linearly in time, tending towards 
the final logit life table. 
 
Other methods pertaining to categories a) and b) have their support in limit mortality tables; that is, 
they use the lowest achieved – or almost achieved – levels, to interpolate the intermediate tables. 
The first proposal of limit mortality tables was presented by Bourgeois-Pichat (1952), where it was 
supposed that the limit levels will be reached in the long run. Those levels are the result of 
extrapolating mortality trends of countries with high life expectancy. The hypothesis underlying 
this kind of method supposes that mortality will evolve depending on the level and structure of 
deaths, according to the world region it belongs to. This argument is supported by Demographic 
Transition Theory. Regarding human survival limits, the works of Olshansky et al. (1990, 2001) 
and Oeppen and Vaupel (2002) are interesting because, for instance, they studied the reductions in 
mortality required to achieve a life expectancy at birth that grows from 80 to 120 years and its 
influence on different areas of public policy. 
 
In case b), for example, the goal technique was used. Such a technique is based on the idea that for 
a given population, mortality rates will converge towards those observed in another goal 
population. Such a population is chosen in such a way that it provides a set of believable goals to 
be reached by the population projected. The choice of a goal population is based on similarities 
regarding cultural and socioeconomic characteristics, medical advances and first causes of 
mortality (Olshansky, 1988). An alternative way to present the goals is by means of the so called 
cause delay. With such an approach, the goal population is a young cohort of the same population 
instead of the same cohort in a different population. The focus is on the implications of delaying or 
fully eliminating the occurrence of one or more causes of mortality (Manton et al., 1980; 
Olshansky, 1987). The basic premise behind the method is that changes in life styles and medical 
advances delay the occurrence of several causes of mortality until advanced ages. Therefore, each 
cohort has a  lower risk of dying than the previous cohorts. 
 
4. Proposed methodology 
 
There is a strong connection between smoothing a time series and estimating its trend. It is well 
known that signal extraction based on the Wiener-Kolmogorov filter, the Kalman filter and 
Penalized Least Squares provide results equivalent to those produced by the Hodrick-Prescott 
employed by economic analysts. Similarly, Guerrero (2007) showed that Generalized Least 
Squares (GLS) produces identical results as those filters, and he emphasized the fact that the 
inverse of the corresponding Mean Square Error matrix (MSE) is the sum of two precision 
matrices. That fact allowed him to measure the precision share attributable to the smoothness 
element of the statistical model. Such a measure leads to an index of smoothness that depends only 
on the smoothing parameter and the sample size of the available data. Therefore, for a given simple 
size, the index serves to decide the value of the smoothing parameter as a function of some desired 
percentage of smoothness fixed beforehand. 
 
The traditional smoothing approach makes use of the smoothing parameter λ, selected with the aid 
of a numerical criterion. If a dataset is smoothed with a specific λ value, we should be aware that a 
particular amount of smoothness is attained. From a purely descriptive point of view, we should 
quantify the amount of smoothness and structure with an appropriate measure, but it is even better 
to fix in advance a preferred amount of smoothness and structure. This idea is in line with that of 
fixing the confidence level (say at 95%) to establish valid comparisons when estimating parameters 
by way of confidence intervals. Our main argument is that the amount of smoothness and structure 
can be fixed at the outset to make the smoothed results comparable. Thus, when smoothing 
univariate data, we believe it is preferable to calibrate the smoothing parameters involved, and we 
emphasize the idea of measuring smoothness of the mortality trends to reduce the subjectivity 
involved by the calibration.  
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It is also important to notice that the existence of a smoothness index allows the analyst to compare 
the results of two smoothed datasets numerically, not just by looking at the corresponding graphs. 
Hence, the decision about which procedure is best can be made more objectively (at least, based on 
the available data, not on subjective beliefs). 
 
Here, we suggest using the HPMV filter to estimate mortality trends by incorporating the idea of 
data smoothness. To that end, a signal-plus-noise model is presented at first, 

t
S
tt ηYY +=  

where Yt denotes the observed mortality, 
S
tY  is the signal, which in our case represents the smooth 

mortality trend and tη  is the noise that basically obscures the trend. When penalizing for the lack 

of smoothness and minimizing with respect to 
S
tY , the following problem arises 
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with tδ  the random error of a structural demographic model. Then, we have a problem similar to 

Boone’s (2000), where we now intend to estimate the unobserved mortality trend, 
S
tY , by solving 

the aforementioned minimization problem.  
 
We approach this problem by first defining a smoothness index which helps us to choose the 
constants 1λ  and 2λ . It is important to note that the methodology proposed is interpreted according 
to a demographic theory that allows for valid comparisons between mortality trends. The 
estimation of mortality trends can be performed by compromising the following three elements: the 
observed mortality, its smoothness, and an assumed goal mortality structure. The observed 
mortality is supposed to be represented by a smooth underlying trend obscured by random errors. 
The smoothness pattern of the trend is assumed to follow an underlying polynomial of order one. 
The goal mortality structure comes from an external source of information and it serves to 
incorporate a goal for the smooth mortality structure. Thus, we consider the model 

Y = YS + η,   η ~ (0, 
2
ησ In)                                               (1) 

  K2YS = ε,   ε ~ (0, 
2
εσ In-2),   E(εη’) = 0            (2) 

and 
      U = YS + δ,   δ ~ (0, 

2
δσ In),   E(δη’) = 0,   E(δε’) = 0.        (3) 

where the symbol ~ stands for “distributed as” (mean vector, variance-covariance matrix).  
 
Equation (1) expresses the vector of mortality as a trend vector YS plus a random noise vector η, 

with 
2
ησ  being the noise variance and In the n-dimensional identity matrix. In (2) we have an 

equation that induces smoothness in the behaviour of YS by assuming an underlying polynomial of 
degree one, that is, t

S
2t

S
1t

S
t εY2YY ++= −−  for t = 3, ..., n, where εt is a random error with 

variance 
2
εσ . And finally, in (3) we postulate a mortality experience with limit structure or, seen 

differently, we use another source of data to combine with the observed information.  
 
We can write (1)-(3) as the following system of equations  
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thus, by using Generalized Least Squares (GLS) to estimate YS, we have  
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Then, if we let 1λ =
2
ε

2
η/σσ  and 2λ =

2
δ

2
η/σσ , we obtain  
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n2221n )IλKK'λ (I ++ )λ( 2UY +                                   (5) 
whose variance-covariance matrix is given by  

Γ = Var( SŶ ) = 
-1

n2221n )IλKK'λ (I ++ 2
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Hence, we have SŶ = M )λ( 2UY +  and Γ  = M
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+= , equation (5) can be rewritten as 

SŶ  = 
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221n )KK'αλ (I + ))α1(α( UY −+ ,  with  
1

2 )λ(1α −+= .                 (7) 
From here, it can be seen that SŶ →U, if α→ 0 . Therefore, the smoothness induced by (2) 
disappears and only convergence to the structure given by (3) is taken into account. On the other 
hand, if α→1, SŶ → Y-1

221n )KK'λ (I + , and the usual HP filter is obtained. Notice that the 
value of α  must be known in advance to calculate SŶ . Besides, SŶ  can be interpreted as the 
combination of two sources of information, the weight of which can be decided by the analyst 
when choosing a value for the constant α . Thus, we have two different approaches to select the 
values of the smoothing constants. Approach (A) choose 1λ  and 2λ . If we use this approach we 
are basically compromising smoothness and structure. Approach (B) choose 1λ  and α . With the 
second approach we first decide on smoothness and then on which mortality structure (observed or 
goal) has greater credibility. These two approaches will be presented in Section 5 in terms of the 
calculation algorithm and illustrated in Section 6 with some observed datasets. 
 
From a numerical calculation standpoint, the smoothed vector (7) can be conveniently obtained by 
applying the Kalman Filter (KF) with smoothness. In order to apply this filter we make use of 
models (1) and (3), so that 
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So, the KF can be used as in Guerrero (2008), but instead of using the original data tY  we will 
now use tt α)U(1αY −+ , with a known α  value. 
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Moreover, it is desirable to know the existing relationship between the uncertainties of tY  and 

tt α)U(1αY −+ . Thus, we consider the variance 
2
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That is,  
2
γσ  = 

2
ησ α , 

where 1α0 <<  and 
2
ησ  is the variance of the model for tY . Hence, we conclude that there is 

more uncertainty in the behavior of tY  than in that of tt α)U(1αY −+ , once α  is known.  

 
5. A smoothness index and its use to select the smoothness parameters 
 

To measure the proportion of relative precision n
2
η Iσ−
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through the estimation process, 22
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where tr(.) denotes trace of a matrix, while n
2
η Iσ−

, n
2
δ Iσ−

 and 22
-2
ε KK'σ  are nn ×  positive 

definite matrices. This index is a measure of relative precision that satisfies the following 
properties: (i) it takes on values between zero and one; (ii) it is invariant under linear 
transformations of the variable Y involved; (iii) it behaves linearly; and (iv) it adds up to unity, i. e.  
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The proof that Λ  is the unique scalar measure fulfilling the four criteria follows directly from the 
proof provided by Theil (1963) for the case of two positive definite matrices A and B, where the 

index is given by Λ (A; A+B). We only need to recognize that, for instance, our n
2
η Iσ−

 plays the 

role of A and n
2
δ Iσ−

 + 22
-2
ε KK'σ  plays that of B. 

 
This index is useful to quantify the relative precision attributable to smoothness and to the induced 
structure in the model, which are part of the precision matrix 1−Γ  given by (6). Therefore, we 
define the smoothness index 

S ( 1λ , 2λ ; n) = ]/n)IσKK'σI(σKK'tr[σ -1
n

2
δ22

2
εn

2
η22

2
ε

−−−− ++  

         = { }/n ]KK' λ[I tr1 -1
22n +−  

with 
λ = 

2
ε

12
δ

2
η σ)σ(σ −−−− + = 

1
21 )λ(1λ −+ = 1αλ . 

 

 
 

191



Since λ  is associated with the smoothness of UY )α1(α −+ , its value can be chosen with the aid 
of the smoothness index S( 1λ , 2λ ; n). On the other hand, 1λ  corresponds to the smoothness 
parameter of the original data Y  and it can be deduced from the values of λ  and α ; that is, 

λ/αλ1 =  with 0α > . In the same fashion, if 1λ  is first set as the smoothness parameter leading to 
a desired percentage of smoothness for Y , and if 1] (0,α∈  is set later, we can deduce the value of 
λ  that determines the smoothness of UY )α1(α −+ . The previous ideas could be used to first set 

1λ , when choosing the percentage of smoothness for Y, then set λ = 1αλ , when choosing the 
percentage of smoothness for the combination UY )α1(α −+ .  
 
Notice that the percentage of smoothness for Y should be greater than, or equal to that of the 
combination, because λ = ≤1αλ 1λ , since 1α0 ≤<  and the smoothness index is an increasing 
monotone function. Or else, the value of α  could be set according to what was previously said by 
setting the values of 1λ  and λ , based on the smoothness index S( 1λ ; n) = 

{ }/n ]KK' λ[I tr1 -1
221n +− , applicable to UY )α1(α −+ . This index is associated to the 

smoothness of  Y  alone, which corresponds to α=1. In this case, 2λ = 0 and the estimate becomes 
SŶ  = 

-1
221n )KK'λ (I + Y  

with Var( SŶ ) = 
-1

221n )KK'λ (I + -2
ησ . The solution that includes both smoothness and 

demographic structure corresponds to )1 ,0(α∈ , i.e., when 2λ > 0, which is provided by (7). 
 
In short, the strategy to smooth the dataset { } Y,...,Y N1  with the HPMV filter, using known 
structural data {  U,..., U N1 }consists of the following steps, where the second step is different for 
each of the two approaches (A) and (B). 
 
1. Smooth the Y  data without considering the existence of U. Thus, fix a desired percentage of 
smoothness and apply Guerrero’s (2008) procedure. As a result, the value of 1λ  is deduced and the 
corresponding smoothed curve with 100S( 1λ ; n)% of smoothness (for example, 80%) is obtained. 
 
2 (A). Decide the degree of smoothness to be exchanged with structure, so that the percentage of 
smoothness is reduced (let us say from 80% to 75%). By doing so, fix the value of 100S( 1λ , 2λ ; 
n)%  and deduce the corresponding value of 1) (0,α∈  from it. 
 
2 (B). Decide the credibility to be assigned to the two mortality structures (observed and goal) by 
fixing the value of 1) (0,α∈  and  measure the final smoothness achieved.  
 
3. Perform the smoothing process with structure by applying the KF to the data { }tt α)U(1αY −+  
which will result in 100S( 1λ , 2λ ; n)% smoothness and 100[S( 1λ ; n) -S( 1λ , 2λ ; n)]% structure 
(that is, proximity to U). 
 
It should be realized that ])KλK'tr[(I 1

ddn
−+ → d  when λ→ ∞ , where d is the order of the dK  

difference matrix (Eilers and Marx, 1996: 94). Therefore, the maximum smoothness that can be 
obtained with n observations is S( λ ; n) → 1-d/n when λ→∞ . This result is useful to know in 
advance the maximum percentage of smoothness achievable in practical applications. 
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6. Applications 
 
The two perspectives of the proposed methodology are used in what follows. (a) The first two 
examples are used to show how to use our method to obtain some desired percentages of 
smoothness and structure according to the analyst´s criterion. In these cases, the structure can be 
seen as a goal to be achieved. (b) Then, we present two other examples in which the analyst has the 
opportunity to decide which source of information has greater credibility: the observed mortality or 
the external mortality structure. It should be noticed that the same computing algorithm is used to 
perform the calculations in both situations. In this work, calculations were carried out with the aid 
of the computer package RATS 7.0. 
 
The data employed in these illustrations come from different information sources. The crude forces 
of mortality of the United Kingdom, Japan and Chile, as well as the United States death 
probabilities estimated by period come from the Human Mortality Database (University of 
California and Max Planck Institute, 2000). United States death probabilities ( xq ) estimated by 
cohorts are taken from Bell and Miller (2005). For the Mexico City example, data come from a 
comparative analysis between paleodemography and historical demography for the XIX Century 
(Ortega, 2003). Natural logarithms were used in all cases. 
 
In the first example, we propose a 2010 goal, in such a way that the year 2000 male population in 
the United Kingdom has a mortality experience as the one in Japan in 2006. We have N = 101 data 
points, so that the maximum smoothness achievable is 98.02%. With a chosen initial smoothness of 
75% and final one of 70%, we obtained 1λ = 6 and λ  = 3, so that α  = 0.5. Notice how the 
estimated trend gives greater weight to Japanese mortality in almost all life range, except for 
mortality in children under 1 year of age, where it is slightly below the observed data. 
 

Figure 1. Male log(mortality) observed in UK 2000, Japan 2006 and trend with 70% smoothness ( 3λ =  and 
0.5α = ). Note: log(mortality) represented in the Y-axis, age at death in the X-axis.  

For the second example, we use a Chile’s female population goal for 2010, such that the annual 
mortality indicator is to have the same experience as the Japanese women for 2006. For this case, 
we also have N = 101 and the same values for 1λ , λ  and α , as well as the chosen initial and final 
smoothness. Also, according to Figure 2, the estimated trend balances when both experiences move 
apart from each other in specific segments of the life range. On the other hand, the estimated child 
mortality for children less than 1 year of age is very close, as much as one from another experience. 
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Figure 2. Female log(mortality) observed in Chile 2005, Japan 2006 and trend with 70% smoothness ( 3λ =  
and 0.5α = ). Note: log(mortality) represented in the Y-axis, age at death in the X-axis.  
 
In the last two examples – in contrast with the first two – the sample sizes of the original mortality 
series are different, a situation that does not cause any problem, since we estimate trends using KF 
(when missing data appear, the filter is applied without smoothness). The larger of the two series is 
used as the Y series of the model. So, two information sources are used, and the analyst can grant 
greater, equal, or less credibility to one of them when choosing a specific value for the parameter  
(when α  = 0.5, the same credibility is given to both sources). It is important to point out that, with 
this approach, the observed mortality structure does not necessarily aspire to behave as the other 
one, but the analyst wants to merge two sources of information into one and has to decide how to 
weigh one information source over another. 
 
The third example makes use of the United States mortality for the male population, as seen from a 

  
Figure 3. Log(mortality) observed by period 2000 and cohort 2010 for the US and trend with 77.6% 
smoothness ( 4.8λ =  and 6.0α = ). Note: log(mortality) represented in the Y-axis, age at death in the X-
axis.  
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longitudinal (by cohort) approach and by period. The corresponding years are 2010 and 2000, 
respectively. In this case, the series have 120 and 110 data points and the maximum smoothness 
achievable – based on the (largest) longitudinal series – is 98.33%. The chosen initial smoothness 
is 90% and the parameter values become 1λ  = 14, λ  = 8.4 and α  = 0.6, generating a final 
smoothness of 77.6%. In Figure 3, it can be noticed that the resulting estimated trend is balanced 
between both experiences. Regarding mortality for males under 15 years of age, the trend is more 
similar to the longitudinal experience and is greater than the one reported by period. 
 
The last example shows how this methodology can be used by some specialists, such as 
anthropologists, demographers or statisticians. In fact, starting from a paleodemography or a 
historical demography approach, it is feasible to obtain mortality trend estimates. Let xn q  be the 
death probabilities by quinquennial groups corresponding to the XIX Century, that come from 
Santa Paula cemetery and Santa Maria parish, both located in Mexico City. There are N = 19 
observations for the Parish series and 13 for the Cemetery series. The maximum smoothness 
achievable in the longer series is 89.47%, so initial smoothness is set at 80% while final 
smoothness became 79.1%  with  the choice of  α  = 0.8.  The parameter values employed are 1λ = 
35 and λ  = 28. As with the previous example, and despite the Cemetery series has the highest 
variabilit , the estimated trend is balanced between both sources. However, the choice of y α , based 
on the analyst’s knowledge, is of paramount importance for this purpose. 

 
Figure 4. Log(mortality) observed in the XIX Century Mexico City and trend with 79.1% smoothness 
( 35λ =  and 8.0α = ). Note: log(mortality) represented in the Y-axis, age at death in the X-axis.  

 

7. Conclusions 

he methodology proposed in this work is useful to estimate trends in mortality series taking into 
 
T
consideration fit, smoothness and some additional information coming from a goal mortality 
structure. Also, it allows the analyst to control smoothness and structure percentages according to 
his/her interests in order to achieve comparability. An added value of this proposal is that it can be 
easily implemented in computational programs, such as Matlab or R. A couple of drawbacks of our 
proposal are that it can be used mechanically by inexperienced analysts, and it depends heavily on 
the quality of the input data (observed and goal). Therefore, it is advisable that the analyst has 
considerable experience working with demographic data.  Relatedly, the analyst must make sure 
that the sources of information are reliable. 
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It should be stressed that the analyst can decide which of the two possible approaches of our 

roposal should be used in a specific situation. The flexibility to handle different mortality 

are: (i) the presence of 
issing data and (ii) different size information sources. Both cases can be handled very efficiently 

p
indicators was illustrated empirically with some observed mortality experiences. These illustrations 
suggest the feasibility of applying our procedure in different scientific fields, not only in 
demography. The application of the proposed methodology can be done on other kinds of 
demographic indicators, such as fertility, marriage, divorces, and migration. 
 
Some of the circumstances that could come up when applying this proposal 
m
by using the KF as a computing device, which easily overcomes the possible numeric difficulties 
that may arise, for instance, when inverting matrices. This is one of the main advantages of our 
proposal over competing procedures.  
 
As a future work, we intend to generalize this methodology to the two-dimensional case, where it is 

reseen that some interesting theoretical results will appear in which the different smoothness 

sider the practical question of applying the methodology by chunks of 
e series within the age range, both for one and two-dimensional cases. This need appears when 
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parameters be related (as it happened with the one-dimensional case). Then, it would be appropriate 
to apply this technique to generate mortality surface estimates, restricted to the experience and to 
some values that the analyst considers appropriate, in order to graduate the observed information 
and enhance comparability.  
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the analyst wants to attain closer proximity of the trend to the demographic structure in a specific 
range and keep the remaining trend balanced between the two different sources of information. One 
of the most remarkable advantages of the proposed methodology is that the analyst can assign 
greater credibility to one information source over another. 
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