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Abstract 
 
Despite numerous studies, the level and age pattern of fecundability are still under discussion in the 
demographic, biologic, and medical literature. Previous analyses, however, have not fully taken into 
account two factors affecting estimated fecundability:  postpartum amenorrhea and variations in 
fecundability among women. This paper used simulation analysis to calibrate a new fecundability model, 
and it showed that fecundability by age, heterogeneity in fecundability, and postpartum amenorrhea by 
age could be estimated simultaneously from all birth intervals.  An empirical analysis of Hutterite birth 
histories showed the following: that fecundability declined almost linearly from age 20 to age 40; that the 
fecundability of a 35 year old was half the level of fecundability of a 25 year old woman; and that 
fecundability varied significantly across women.  For an average Hutterite woman, the waiting time to 
next live-birth conception was 13.1 months at age 30 and 22.2 months at age 40.  These intervals included 
6.5 months of postpartum amenorrhea.  
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INTRODUCTION 
 
It is difficult to estimate the level and age pattern of fecundability, and it is no surprise that 
accurate information about the age schedule of fecundability is lacking (Menken 1985;  Menken, 
Trussell and Larsen 1986;  Golden and Millman 1988).  Using the first birth interval in 
noncontracepting populations, Heckman and Walker (1990) and Wood et al. (1994) developed 
new models of effective fecundability. Because most couples in noncontracepting populations 
have their first child before age 30, however, models based on these populations cannot be used 
to estimate fecundability at older ages. Researchers interested in fecundability in older 
individuals - that is, in constructing fecundability models that include second and higher order 
birth intervals - face a particular problem: accounting for postpartum amenorrhea. To circumvent 
this problem, Larsen and Vaupel (1993) set the postpartum infecund period to a fixed constant 
after each birth, in spite of the fact that the duration of postpartum amenorrhea was not the same 
for all women and in all birth intervals.  As a result, they claimed that their model matched the 
age pattern, but not the level of effective fecundability. D'Souza (1974) proposed a promising 
approach to assess the age pattern of effective fecundability by using a convolution model, in 
which the duration of postpartum amenorrhea was specified by a normal distribution and 
effective fecundability was specified by a Gompertz distribution.  Two problems, however, 
appeared in this approach.  First, D'Souza confined the analysis to couples who had at least four 
children and who were observed at least until their 50th birthday: hence the estimated age 
schedule of effective fecundability was probably overstated. Second, D'Souza assumed that there 
was no variation in effective fecundability across women, despite physiological evidence 
suggesting that fecundability varies widely (e.g., Ellison 1990; Ellison et al. 1993; Ellison, 
Peacock and Lager 1989).  If variation in effective fecundability or unobserved heterogeneity 
were ignored, estimates of mean fecundability were biased downward because those women with 
high fecundability conceived; thus, with each additional month, the sample was increasingly 
selected for women with low fecundability. Yashin et al. (1998) modified and extended 
D'Souza's model. They proposed a new convolution model of fecundability, one based on all 
birth intervals. This model described the effects of postpartum infecundity on fecundability and 
took into account unobserved heterogeneity in fecundability; under very simplistic assumptions, 
the model performed well. The present study aimed at evaluating this model under more realistic, 
albeit more complicated, assumptions. 
     Fecundability is defined as the probability of conceiving during any given menstrual cycle for 
a sexually active woman who is not pregnant, postpartum infecund, or contracepting (Pressat and 
Wilson 1985). In our analysis, only live-birth conceptions have been considered and effective 
fecundability is estimated. To simplify presentation, the term fecundability is used throughout 
the paper to denote effective fecundability. 
     One aim of the present analysis was to evaluate the effects of unobserved or partially 
observed physiological processes on estimates of fecundability, and to calibrate models that took 
into account these unobserved processes. A prime example of such a process is the transition 
time from the postpartum infecund state to the fecund state. In standard reproductive histories, 
these transition times were usually either unavailable or incomplete. The Demographic and 
Health Surveys, for example, which were conducted in more than eighty developing countries, 
included information about the duration of postpartum amenorrhea only for children born in the 
last five to six years before the survey date (Institute for Resource Development, Macro 
International, Inc., 2001). Given this lack of data, therefore, mathematical models are needed to 
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evaluate the effects of postpartum amenorrhea on estimates of fecundability. It is well known 
that the monthly proportion of conceptions is lower in a sample of women with prolonged 
postpartum amenorrhea than in a sample of women with shorter durations, because during 
amenorrhea a woman is non-susceptible. However, it is not known how these variations in 
duration of amenorrhea influence estimates of fecundability. It is also well known that estimates 
of fecundability are downward biased in studies where heterogeneity is not taken into account 
(Sheps and Menken 1973).  It is less well known, however, how much the baseline level of 
fecundability varies across women in noncontracepting populations, and how to account for 
unobserved variability in fecundability (Heckman and Walker 1987; Larsen and Vaupel 1993).  
A woman planning her childbearing needs to know not only the typical number of months it 
takes to conceive a child, but also how this number varies among women.  Demographers who 
are concerned about the proximate determinants of fertility also need this information (Menken 
1985).  
     A microsimulation model was used to evaluate the effects that different parametric 
specifications of unobserved reproductive characteristics had on estimates of fecundability. A 
wide range of reproductive characteristics, which were likely to encompass all the variation in 
human populations, could be postulated in this model. Therefore, the findings of this analysis 
should facilitate parametric specifications of fecundability models in subsequent empirical 
analyses.  In the simulated data, we knew all the true parameters and, therefore, we could assess 
how changes in one reproductive characteristic affected estimated fecundability.  The sensitivity 
analysis conducted in this paper attempted the following:  1) to find model specifications that 
were sufficiently flexible to capture fecundability by age, fecundability across women (i.e., 
unobserved heterogeneity), the average duration of postpartum amenorrhea, and variations in the 
duration of postpartum amenorrhea by age; and 2) to ascertain the effects of sample size and 
sampling variation on parameter estimates.  
     A second aim here was to apply the proposed model in an empirical analysis of a sample of 
Hutterite women's reproductive histories.  The Hutterites provided an ideal basis for a baseline 
fecundability schedule because they appeared to be a natural-fertility population, with no 
evidence of deliberate fertility control (Sheps 1965). In addition, the Hutterites were a 
homogeneous population, and they displayed no variation in fertility according to education, 
occupation, income, or social status (Eaton and Mayer 1953).  They were known to live a healthy 
lifestyle, e.g., their belief system forbade them to smoke tobacco or drink alcohol, and there were 
few incidences of disease that could lead to impaired fertility of pathological origin. Thus, 
documented variations in unobserved heterogeneity could be ascribed largely to biological 
factors. The Hutterites were used as a standard in numerous demographic studies, such as the 
Princeton European Fertility Project (Coale and Watkins 1986) and in Coale and Trussell's 
model of marital fertility (Coale and Trussell 1978). They have also been used to develop 
fecundability models (D'Souza 1974; Heckman and Walker 1987, 1990; Larsen and Vaupel 
1993). 
     The present analysis extended previous work on the measurement of fecundability (see, for 
example, D'Souza 1974; Heckman and Walker 1987, 1990; Larsen and Vaupel 1993; Wood et al. 
1994), and also provided additional substantive information about fecundability:  1) the new 
model made it possible to estimate the level and the age pattern of fecundability by controlling 
for postpartum amenorrhea and unobserved heterogeneity; 2) the model applied to first as well as 
to higher order birth intervals; 3) the model was calibrated in a simulation analysis prior to its 
application to empirical data;  4) the study evaluated the effects on estimates of fecundability by 
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confining analysis to closed birth intervals versus employing both closed and open birth 
intervals; 5) the study situated its findings about the level and age pattern of Hutterite 
fecundability in relation to previous findings by D'Souza (1974), Heckman and Walker (1987, 
1990) and Larsen and Vaupel (1993), so assessing and illustrating the new knowledge obtained 
since these earlier studies. No previous study of the level and age pattern of fecundability 
controlled for postpartum amenorrhea and unobserved heterogeneity while at the same time 
providing estimates that fitted the data and encompassed all birth intervals. 
 
FECUNDABILITY MODEL 
 
We propose a classic heterogeneity model, based on assuming women's age trajectory of 
fecundability follows the pattern described by the hazard of a live-birth conception at a given 
age, and the level of fecundability at a given age differs across women. A woman's level of 
fecundability at a given age is considered an unobserved random variable (called frailty). The 
distribution of this random variable describes the heterogeneity in fecundability across women. 
The duration of postpartum amenorrhea is also considered an unobserved random variable. 
     Let the hazard of a woman's live birth conception at age x be denoted by z⋅ h(x), where the 
frailty variable z measures the persistent difference, or heterogeneity, in fecundability across 
women and h(x) describes how fecundability changes with a woman's age. For a given woman 
with frailty z, the probability density function of the first live-birth conception at age x can be 
represented as 
 

                                        f1 (x, X0) = z ⋅  h(x) ⋅  exp ( )
0

x

X
z h u du⎛ ⎞

⎜ ⎟
⎝ ⎠
− ⋅∫ ,                                        (1) 

 
where X0 is the age at marriage.  
 
     The waiting time for the ith (I > 1) live-birth conception starts at the end of the postpartum 
amenorrhea period following the previous birth. Let τ be the duration of postpartum amenorrhea 
and gi(τ) be the density of the duration of postpartum amenorrhea after the i-1th live-birth.  Then, 
the probability density function of the ith live-birth conception is 
 

fi (x, Ti-1) = z ⋅  h(x) ⋅ 
1

0
e x pix T −−
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1i
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T
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where Ti is age at live-birth i and I is the last observed live-birth. 
 
     The conditional likelihood function for one woman with reproductive history (X0, T1, T2, …, 
TI, x) given her frailty z is 
 

L(Y1, X0 ; Y2, T1; …  ; YI, TI-1; x, TI ) = f1 (Y1, X0) 2
I
i=Π fi (Yi , Ti-1)S(x),              (3) 

 
where Yi = Ti - G is the age at ith live-birth conception, G is the duration of gestation, x is the 
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τ+∫ ⋅ h(u)du)gI  (τ )dτ represents that since her 
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Ith live birth the woman has not yet conceived at the time of censoring.  The effect of sterility 
was modeled in a separate paper (Yan and Larsen 2001). 
 
     The advantage of this model is the opportunity it affords to use various parametric forms of 
the duration of postpartum amenorrhea, the hazard rate of a live-birth conception, and 
heterogeneity in fecundability to calculate the explicit form of the likelihood function.  
     Women's age at marriage and at all births are recorded to the day, so we treat the ages as 
exact ages on a continuous time scale. Ages are measured in months and fractions of months.  
     In the microsimulation and estimation, continuous time models of hazards are used. The 
fecundability, i.e., the monthly probability of live birth conception q(x), is given by 
 

q(x)=1-exp ( )( )1x

x
u duh

+
−∫ .                                                       (4) 

 
When fecundability is low, the two measures are very close.  
 
MICROSIMULATION OF REPRODUCTIVE HISTORIES 
 
The microsimulation modeling for the analysis of reproductive histories was first suggested by 
Barrett (1969, 1971), and then later revised by Trussell and Wilson (1985) and Larsen and 
Menken (1989).  In this paper, these ideas are developed so as to model reproductive histories 
with unobserved heterogeneity in fecundability and hidden postpartum amenorrhea following a 
live birth. For generating birth histories, each woman was assigned particular reproductive 
characteriistics, such as fecundability, duration of postpartum amenorrhea, and age at onset of 
sterility.  We used lunar months, i.e., 13 months per year, to approximate the menstrual cycle.  
Events were generated up to the date at censoring. In the first group of models, complete birth 
histories were generated, and all women were censored at age 50. In a second group, incomplete 
birth histories were generated, and a censoring date was randomly selected from the age 
distribution in a model life table. Table 1 lists the specific distributions used in simulating 
reproductive histories. Age at marriage was generated following a uniform distribution.  
If censoring preceded marriage, the woman was excluded from analysis. Similarly, age at 
sterility was determined, and if sterility preceded marriage or censoring, the woman was 
excluded from analysis. Sterility was set at age 50 in one group of models. In an alternative 
model, sterility followed a Gompertz distribution, with a mean age of sterility of  42.3 (Pittenger 
1973).  Next, fecundity was chosen. Each woman had the same level of fecundability up to age 
30; after age 30, fecundability declined linearly to zero at age 50. If onset of sterility preceded 
censoring, then fecundability of the woman dropped to zero at the month of onset of sterility, and 
she experienced no further reproductive events up to the month of censoring. In one group of 
models, fecundability was homogeneous, and in another fecundability was heterogeneous: in the 
latter cases the level of fecundability for each woman followed either a gamma or a two-point 
distribution. A random number from a uniform distribution from zero to one was generated for 
each month: if it did not exceed her fecundability for that month, she conceived. Otherwise, her 
age increased by one month and the process was repeated. Following a live birth there was a 
period of amenorrhea during which the woman was nonsusceptible. Thus, before a woman could 
conceive again, she aged the length of pregnancy plus the duration of postpartum amenorrhea. 
The duration of gestation was set to 10 lunar months for all pregnancies. In some models the 
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duration of postpartum amenorrhea was constant, in others, postpartum amenorrhea followed a 
gamma, normal, or negative binomial distribution, and in other models the duration of 
postpartum amenorrhea varied by age.  
     The simulation of reproductive histories continued as described above up to the date of 
censoring or sterility. Women who had not conceived by the age of censoring or sterility were 
excluded from analysis. In this model, no fetal deaths or multiple births occurred, and only 
reproductive characteristics of women were generated. Furthermore, all marriages were intact 
and all women were exposed to pregnancy from the date of marriage to the date of censoring or 
sterility, except during pregnancy or periods of postpartum amenorrhea. 
 
Table 1.  Assumptions tested in the sensitivity analysis 

Variable/Assumptions  Model 
 Base Alternative 
Age at marriage   
   Uniform distributiona 20-27 20-21, 20-23, 20-25, 20-29 
Postpartum amenorrhea across women  (mean in months)     
   Constant  3 0 and 6 
   Gammab  3, 6, 9, and 12 
   Normalc  3, 6, 9, and 12 
   Negative binomiald  3 and 6 
Postpartum amenorrhea within a woman (mean)   
   Piecewise lineare 3  
Fecundity within a woman (mean)    
   Piecewise linearf .25  
Fecundity across women     
   Homogeneous (mean)  .25  
   Heterogeneous (mean frailty)   
      2-pointg  1 
      Gammah  1 
Sterility (mean)   
   Constant  50  
   Gompertzi  42.3 
Age at censoring   
   Constant   50  
   Model Westj  Level 13 
   

a The uniform distribution for the age interval 20-21 is drawn from the lunar months of (260-286). 
b Gamma density:  g(α, β, c) = ( ) ( )1

>
( )

, x  c.a x cx c e
α

ββ
τ α

− − −−    

c Normal density:  φ(µ, σ) = 
1

2
e

πσ
( )2 22x µ σ− − . 

d Negative binomial density: h(r, p) = 1 a xr x p qx
⎛ ⎞
⎜ ⎟
⎝ ⎠

+ − . 

e Postpartum amenorrhea remains constant at 3 months for age ≤  30 and constant at 5 months at age > 30.  
f Fecundability remains constant at .25 from age at marriage to age 30, then declines linearly to zero at age 50.  
g Probability distribution of individual frailty:  P(Z = z1) = p1, P(Z = z2) = 1- p1, and p1z1 + (1-p1) z2=1. 
h Individual frailty follows Gamma distribution with mean 1. 

i Sterility density:  s(a, b, c) = 
( )

( )( )1b x ca eb x c bae e
−− −−  (Pittinger 1973). 

j Coale and Demeny (1983). 
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     To minimize random errors, large samples of 5,000 couples were generated. From the 
simulated reproductive histories, the sensitivity of estimated fecundability to variations in 
reproductive characteristics was examined. In each reproductive model, estimated fecundability 
was obtained from a sample of 5,000 women and 50 replications. 
     For each woman, the age pattern of the hazard of conception was modeled by a piecewise 
linear function, and support points for the estimated monthly hazard of conception were obtained 
at ages 20, 25, 30, 35, 40, and 45.  We chose a flexible piecewise linear function because the age 
pattern of fecundability is not well known (Larsen and Vaupel1993). 
 
RESULTS FROM SIMULATION STUDY 
 
In this analysis, the effects of different assumptions on parameter estimates about a given 
reproductive characteristic or variable were evaluated. For example, the bias that occurred in 
estimates of fecundability whenever a homogeneous model was applied to a heterogeneous 
sample were assessed. The variables analyzed included heterogeneity in fecundability, 
postpartum amenorrhea, age at onset of sterility, and age of censoring; models with different 
assumptions about each of these variables were evaluated, and the estimated parameters 
produced by the models were then compared to the true parameters.  Finally, the effects of 
sample size and of sampling variation were evaluated. 
     The estimation procedure used the quasi-Newton algorithm supported by the Fortran IMSL 
Library (Microsoft Corporation 1995). 
 
Effect of Heterogeneity in Fecundability 
 
In order to evaluate the effects of heterogeneity in fecundability on estimated fecundability, 
samples of heterogeneity were generated by multiplying the base fecundability with a frailty 
variable Z, which had a two-point distribution, and a gamma distribution with mean one.  For 
instance, in the case of two-point frailty with p1 = .2, z1 = .6, 20 percent of the women in the 
population had fecundability of .6 × (base fecundability), and the other 80 percent of women had 
fecundability of z2 × (base fecundability), such that p1 z1 + (1-p1) z2 = 1. 
     To capture heterogeneity in the sample, a two point and a gamma distribution were used in 
the model. A homogeneous model was also used to evaluate the bias in fecundability estimates. 
The analysis documented that heterogeneity generated by a two-point distribution was  
estimated well both by models that included a one-parameter gamma (α = β, c = 0) and by those 
that included a two-point distribution (Table 2 Panel a). Estimates using a two-point distribution 
of frailty resembled true fecundability, and this was the case not only for models with two equal 
sized subgroups of fecundability, but also for models with a large and a small subgroup (an 80  
and a 20 percent split, for example).  The proportion and the fecundability in each subgroup were 
also found to be close to the true values. 
     A one-parameter gamma model captured heterogeneity very well when heterogeneity was 
generated by a one-parameter gamma distribution.  In contrast, estimated fecundability was 
significantly lower than true fecundability at all ages when it was modeled by a two-point 
distribution. This bias followed from the fact that the two-point distribution could not capture the 
range of heterogeneity in fecundability generated by a gamma distribution (Table 2 Panel b).  In 
the case where fecundability was generated by a gamma distribution with three parameters,  
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Table 2.  Estimated monthly hazard of live-birth conception in models with heterogeneous fecundability1 
True frailty  Age True  Estimated  
Two-point (p1, z1)    Homogeneous Two-point Gamma 
Panel a:       
p1 = .2, z1 = .6  20 .250 .242 .243 .249 
  25 .250 .242 .247 .249 
  30 .250 .240 .248 .247 
  35 .188 .180 .185 .186 
  40 .125 .123 .125 .125 
  45 .063 .062 .062 .063 
 p1    .187  
 z1    .604  
 α     25.000 
 Log (likelihood)   -26336.5 -26275.3* -26274.5* 
       
p1 = .5, z1 = .6  20 .250 .223 .246 .247 
  25 .250 .224 .248 .250 
  30 .250 .221 .249 .247 
  35 .188 .168 .186 .186 
  40 .125 .115 .125 .125 
  45 .063 .059 .062 .062 
 p1    .499  
 z1    .603  
 α      6.249 
 Log (likelihood)   -26275.7 -25803.6* -25878.3* 
       
p1 = .8, z1 = .8  20 .250 .232 .249 .245 
  25 .250 .230 .248 .248 
  30 .250 .228 .250 .250 
  35 .188 .173 .186 .187 
  40 .125 .117 .125 .125 
  45 .063 .059 .062 .063 
 p1    .798  
 z1    .801  
 α      6.249 
 Log (likelihood)   -26305.9 -26056.3* -26165.5* 
Panel b:       
α = 2, β = 2, c = 0  20 .250 .186 .221 .245 
  25 .250 .179 .219 .245 
  30 .250 .181 .220 .247 
  35 .188 .144 .168 .186 
  40 .125 .105 .118 .126 
  45 .063 .056 .059 .063 
 p1    .481  
 z1    .460  
 α     2.000 
 Log (likelihood)   -25747.4 -24583.9* -24386.5* 
       
α = 4, β = 4, c = 0  20 .250 .212 .232 .247 
  25 .250 .213 .237 .250 
  30 .250 .210 .234 .247 
  35 .188 .160 .177 .186 
  40 .125 .113 .122 .125 
  45 .063 .058 .061 .062 
 p1    .463  
 z1    .576  
 α      4.004 
 Log (likelihood)   -26166.9 -25672.7* -25533.6* 
       
α = 1, β = .1, c = .15  20 .250 .228 .244 .248 
  25 .250 .229 .244 .246 
  30 .250 .230 .245 .246 
  35 .188 .172 .184 .185 
  40 .125 .118 .124 .124 
  45 .063 .060 .062 .062 
 p1    .709  
 z1    .790  
 α      6.250 
 Log (likelihood)   -26311.7 -26098.2* -26135.4* 
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1  Standard errors are ≤ .003. 
* .001 level of significance based on likelihood ratio test. 
   Two point compared to homogeneous model has 2 degrees of freedom. 
   Gamma compared to homogeneous model has 1 degree of freedom. 
 
estimated fecundability from the two-point and the gamma model were almost identical, and 
both sets of estimated parameters were close to the true parameters (Table 2 Panel b).  
     In summary, a wide range of heterogeneous fecundability was accurately estimated by both a 
one-parameter gamma and by a two-point distribution. Heterogeneous fecundability was 
consistently approximated more closely by a heterogeneous model than by a homogeneous 
model, even when the wrong model of heterogeneity was used. Each of the heterogeneous 
models fitted the data significantly better than did the homogeneous models based on the 
likelihood ratio test. Furthermore, we found that a one-parameter gamma performed better than a 
two-point distribution because:  1) estimated fecundability from a one-parameter gamma was 
closer to true fecundability, and 2) in a one-parameter gamma, only one parameter needed to be 
estimated, whereas a two-point distribution required two estimated parameters. 
 
Effect of Postpartum Amenorrhea 
 
Subsequent analysis examined the sensitivity of various parametric models to different 
distributions and different mean durations of postpartum amenorrhea.  First, the duration 
of postpartum amenorrhea was modeled by a single parameter distribution. We used a normal 
distribution following D'Souza's (1974) seminal work. Because of its flexibility, a gamma 
distribution was also used. Samples of postpartum amenorrhea were generated by a constant and 
from a normal, a gamma, and a negative binomial distribution. Table 3 presents the estimated 
parameters from a normal and from a gamma model of postpartum amenorrhea, and the sample 
mean duration of postpartum amenorrhea was 3 months.  
 
Table 3.  Estimated monthly hazard of live-birth conception and postpartum amenorrhea by different distributions of 
postpartum amenorrhea1 

  Distributions of P.A.2       P.A.     Age   
Sample Model (months) 20 25 30 35 40 45 
True parameters  3.0 .250 .250 .250 .188 .125 .062 
         
Constant Normal 3.3 .247 .266 .272 .199 .132 .062 
 Gamma 3.7 .246 .278 .292 .212 .138 .064 
         
Normal Normal 3.0 .253 .248 .249 .186 .125 .061 
 Gamma 3.4 .255 .263 .271 .199 .132 .062 
         
Gamma Normal 2.6 .239 .230 .229 .174 .120 .060 
 Gamma 3.1 .243 .246 .249 .187 .126 .061 
         
Negative Normal 2.3 .237 .219 .213 .167 .116 .059 
binomial Gamma 2.7 .241 .232 .229 .177 .120 .060 
         

1 Standard errors are ≤  .003. 
2 P.A. is postpartum amenorrhea. 
 
     As expected, the estimated parameters were very close to the true parameters in the models 
where postpartum amenorrhea was geenerated and estimated by the same distribution, either a 
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normal or a gamma. However, neither the normal nor the gamma model could fully describe the 
wide range of postpartum amenorrhea generated by different distributions. In the one-parameter 
normal model, the standard deviation was set to be one. The normal model could not capture 
durations of postpartum amenorrhea beyond three standard deviations of the mean. The gamma 
and negative binomial distributions had variances of 3 and 6, respectively. Thus, the long 
durations of postpartum amenorrhea in the samples generated by the gamma and negative 
binomial distributions could not be taken into account in the normal model. Consequently, 
the duration of postpartum amenorrhea was underestimated. In contrast, when the true  
standard deviation was less than one, as in the case of the constant model, the duration of 
postpartum amenorrhea was overestimated. 
     Similar results were obtained when postpartum amenorrhea was modeled by a gamma 
distribution. In the gamma model, the scale parameter was set at one, so that the variance 
equaled the mean, which was the parameter to be estimated. We found that the duration of 
postpartum amenorrhea was underestimated when the true variance was larger than the mean, as 
in the sample generated by a negative binomial distribution; conversely, it was overestimated 
when the true variance was less than the mean, as in the samples generated by a constant or a 
normal distribution. Furthermore, bias in the estimate of postpartum amenorrhea would in turn  
bias the estimate of fecundability: fecundability would be underestimated if postpartum 
amenorrhea was underestimated, and overestimated if postpartum amenorrhea was 
overestimated. This was because, for a given number of children a woman had at a given age, the 
shorter the estimated duration of  postpartum amenorrhea, the longer the estimated waiting time 
to next conception, i.e., the lower the estimated fecundability. The difference of the estimated 
postpartum amenorrhea from the normal model and the gamma model was about 0.35 month 
across the range of different samples analyzed. This discrepancy was because the variance of 
postpartum amenorrhea in the normal model was less than the variance in the gamma model.  
If the difference in standard deviations was taken into account, the normal model and the gamma 
model performed equally well. In conclusion, a misspecification of the variance of postpartum 
amenorrhea in the one-parameter model would cause bias in the estimated parameters of 
postpartum amenorrhea and fecundability by age. 
     Because of the finding suggesting the importance of the variance of postpartum amenorrhea, 
two-parameter models of postpartum amenorrhea were examined. However, neither a two-
parameter gamma nor a two-parameter normal model could pick up the mean and the variance of 
postpartum amenorrhea, even in samples where postpartum amenorrhea was generated and 
estimated by the same distribution (results not shown). We conjectured that the two-parameter 
models could not distinguish the variance of postpartum amenorrhea from the variance in 
waiting time. As a consequence, when the model failed to identify the variance, it also failed 
to identify the mean duration of postpartum amenorrhea.  
     The subsequent analysis addressed whether one-parameter models of postpartum amenorrhea 
(e.g., a normal or a gamma model) could capture postpartum amenorrhea generated by a wide 
range of different distributions when the true variance of postpartum amenorrhea was specified 
in the model. A duration of 6 months of postpartum amenorrhea was used to allow for a wider 
variance. The normal model and gamma model performed equally well, and the normal model 
was chosen because of its computational convenience. The results are presented in 
Table 4, and they confirm the findings in the previous analysis of postpartum amenorrhea (Table 
3). That is, estimated postpartum amenorrhea was not sensitive to different distributions of 
postpartum amenorrhea, but it was sensitive to the variance. Irrespective of the distribution used 
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to generate postpartum amenorrhea, the estimated parameters were very close to the true 
parameters when the true variance was specified in the model. In contrast, the estimated 
parameters deviated from the true parameters when the variance was misspecified. The 
parameters were overestimated if the variance was overstated, and underestimated if the variance 
was understated. 
 
Table 4.  Estimated monthly hazard of live-birth conception and postpartum amenorrhea by different mean durations 
and variances of postpartum amenorrhea1 

           Distributions of P.A.      P.A.       Age   
Sample Model (months) 20 25 30 35 40 45 
True parameters   .250 .250 .250 .188 .125 .062 
         
Postpartum amenorrhea 6months         
Constant σ2 = 0.0 σ2 =   0.1 6.2 .247 .259 .262 .192 .128 .061 
 σ2 =   4.0 6.5 .244 .271 .284 .205 .134 .062 
         
Normal σ2 = 1.0 σ2 =   1.0 5.8 .248 .240 .240 .180 .123 .060 
 σ2 =   4.0 6.3 .250 .258 .267 .196 .131 .062 
         
Gamma σ2 = 6.0 σ2 =   6.0 5.9 .243 .240 .238 .182 .124 .060 
 σ2 =   4.0 5.5 .242 .227 .220 .171 .118 .059 
         
Negative binomial  σ2 = 12.0 6.2 .256 .253 .256 .197 .132 .062 
  σ2= 12.0 σ2 =   4.0 4.8 .245 .203 .192 .154 .110 .058 
         
Postpartum amenorrhea 9months         
Normal σ2 = 9.0 σ2 =   4.0 7.6 .240 .200 .185 .149 .107 .057 
 σ2 =   9.0 8.6 .246 .231 .225 .175 .121 .060 
 σ2 = 16.0 9.3 .243 .251 .257 .197 .132 .063 
         
Postpartum amenorrhea 12months         
Normal σ2 = 9.0 σ2 =   4.0 10.4 .246 .196 .180 .144 .106 .056 
 σ2 =   9.0 11.6 .250 .230 .224 .172 .121 .060 
 σ2 = 16.0 12.1 .246 .244 .248 .189 .129 .061 
         

1 Standard errors are ≤ .01. 
 
     We then addressed the degree of bias in the parameter estimates when a misspecified variance 
of postpartum amenorrhea was used in the model. The bias was trivial in models with mean 
durations of postpartum amenorrhea of 3 and 6 months (Table 3 and Table 4). Subsequently, we 
estimated parameters from samples with mean durations of  postpartum amenorrhea of 9 and 12 
months. In these models, only a normal distribution was used to generate postpartum 
amenorrhea, because, as noted above, the estimated parameters were not sensitive to the 
underlying distribution. To evaluate the bias of the estimated parameters from a misspecified 
variance of postpartum amenorrhea, three different values of the variance were specified: one 
true variance, one understated, and one overstated.   
     Table 4 shows that models with postpartum amenorrhea of 9 or 12 months provided estimates 
that were very close to the true parameters when the true variance was specified. As expected, 
the parameters were slightly underestimated when the variance was understated, and conversely, 
when the variance was overstated, the parameters were slightly overestimated. However, the 
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variances specified cover a wide range of postpartum amenorrhea, and the bias of the resulting 
estimates was relatively small.  
     To summarize, one-parameter postpartum amenorrhea models performed better than  two-
parameter models. Both the one-parameter normal and the gamma models of postpartum 
amenorrhea  provided good estimates of the parameters when the true variance was specified, 
regardless of the underlying distribution of postpartum amenorrhea. When the mean postpartum 
amenorrhea was 6 months or less, the bias of the estimates was minor, even when the variance 
was misspecified, due to the relatively small range within which the variance could vary. For 
longer durations of postpartum amenorrhea (9 months or longer), the estimates provided an 
accurate approximation of the true parameters when the true variances were specified, and a 
relatively small error arose for a wide range of variances.  
 
Estimated Fecundability with Postpartum Amenorrhea, Heterogeneity and Sterility 
 
The subsequent model was calibrated by estimating fecundability, postpartum amenorrhea, and 
heterogeneity simultaneously. The model used a one-parameter gamma distribution for 
heterogeneity and a one-parameter normal distribution for postpartum amenorrhea, as  
discussed above. Sample frailty was generated by a gamma distribution with various parameters 
to address different degrees of heterogeneity. Duration of postpartum amenorrhea was generated 
by a normal distribution with a mean of 3 months and a variance of 1 month. 
 
Table 5 presents the estimates of frailty, postpartum amenorrhea and fecundability by age. This 
analysis demonstrated that postpartum amenorrhea, fecundability by age, and heterogeneity in 
fecundability could be estimated simultaneously in a convolution model. All the reproductive 
characteristics were captured well by the model.  
 
Table 5.  Estimated monthly hazard of live-birth conception and postpartum amenorrhea in models with 
heterogeneous fecundability1 

 Sample frailty  Estimated frailty    P.A.          
     Gamma (α, α) (months)          Age    
          σ2 = 1/α̂   20 25 30 35 40 45 
True parameters  3.0 .250 .250 .250 .188 .125 .062 
         
Gamma (2, 2, 0) σ2 = .50 .424 2.9 .236 .234 .234 .180 .125 .060 
Gamma (4, 4, 0) σ2 = .25 .235 3.0 .238 .241 .241 .183 .126 .061 
Gamma (1, 2.5, .6) σ2 = .16 .129 3.0 .245 .243 .245 .184 .125 .060 
         

1 Standard errors are ≤ .006. 
 
     Next, we examined whether the model could also capture variations in the duration of 
postpartum amenorrhea by age.  In this analysis the true duration of postpartum amenorrhea was 
set to 3 months before age 30 and to 5 months after age 30 (Table 6).  In Model 1, one parameter 
was used to estimate the duration of postpartum amenorrhea, i.e., we assumed that the duration 
of postpartum amenorrhea was constant for all ages. This model misspecification resulted in an 
estimate of postpartum amenorrhea of 3.3 months, which is higher than the true 3 months before 
age 30, and lower than the true 5 months after age 30. Furthermore, this error in the estimate of 
postpartum amenorrhea resulted in an expected error in the estimates of fecundability by age.  
More specifically, fecundability was overestimated at age 25 (because estimated postpartum 



 13

amenorrhea was overstated), and underestimated above age 30 (because estimated postpartum 
amenorrhea was understated).  In Model 2, two parameters were used to estimate the average 
duration of postpartum amenorrhea.  In this model the estimated duration of postpartum 
amenorrhea was 3.0 months before age 30 and 4.3 months after age 30 suggesting that the model 
captured variations in the duration of postpartum amenorrhea.  The duration of postpartum 
amenorrhea was slightly underestimated above age 30 resulting in slightly reduced estimates of 
fecundability above age 35.  In Model 3, the true duration of postpartum amenorrhea was set at 3 
months for all ages, but two parameters were used to estimate the duration of postpartum 
amenorrhea by age.  In this case, estimates of postpartum amenorrhea and fecundability by age 
were very close to the true parameters of amenorrhea and fecundability.  Thus, modeling 
variations in the duration of postpartum amenorrhea by age, when postpartum amenorrhea was 
truly constant, resulted in unbiased estimates of postpartum amenorrhea and fecundability by 
age.  In summary, the model was able to measure variability in fecundability by age and across 
women, as well as variability in duration of amenorrhea by age and across women. 
 
Table 6.  Estimated monthly hazard of live-birth conception and postpartum amenorrhea in models with 
heterogeneous fecundability1 
 

Model  Estimated frailty     P.A. (months)          
    Gamma (4, 4) Age ≤ 30 Age > 30          Age    
 σ2 = 1/α̂   20 25 30 35 40 45 
True parameters .250 3.0           2.0 .250 .250 .250 .188 .125 .062 
         
Model 1 .212          3.3 .249 .261 .228 .117 .080 .000 
         
Model 2 .220 3.0           1.3 .250 .237 .253 .138 .084 .000 
         
True parameters .250 3.0           0.0 .250 .250 .250 .188 .125 .062 
         
Model 3 .236 3.0           0.0 .255 .244 .235 .167 .088 .000 
         

1 Standard errors are ≤ 0.007. 
 
     In order to asses the effect of sterility on parameter estimates, samples were generated with 
sterility obtained from a Gompertz distribution with a mean age of sterility of 42.3 years (Table 
1). When the true age at sterility was known, we set x to age at sterility in the likelihood function 
described by equation (3). However, age at sterility was usually an unobserved event. Two ways 
were considered to circumvent this limitation. First, all women were analyzed up to the age of 
their last birth, i.e., the analysis was limited to closed birth intervals. Second, all women were 
included up to a given age C, set to the oldest age of last birth in the sample analyzed. In the 
simulated populations, the oldest age at last birth changed in each replication, and we set C to 46.  
     The simulation analysis suggested that, in a population with little sterility before the late 30s, 
the model estimated fecundability accurately up to age 40, both from all birth intervals and from 
closed birth intervals (results available from author). However, it was difficult to separate the 
effects of  selection on estimates of fecundability from closed birth intervals. In contrast, the 
downward error in estimates of fecundability from all birth intervals was obvious. 
 
Effect of Censoring and Sample Size Evaluation 
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The parameter estimates from complete and incomplete birth histories were compared in order to 
evaluate the effects of different censoring schemes (Table 1). In samples with incomplete birth  
histories, the number of women in the sample at older ages was reduced, resulting in 
underestimates of heterogeneity. The error in heterogeneity was relatively small from all birth  
intervals, though it was greater when only closed birth intervals were analyzed. Furthermore, 
estimates of fecundability from closed birth intervals were biased by selection. Therefore, we 
concluded that analyses should be based on all birth intervals both when birth histories were 
censored and when they were observed up to age 50 (results available from author). The effects 
of sample size and sampling variation on parameter estimates were evaluated in samples of 500, 
250, and 100 women with complete and incomplete birth histories. The model was not sensitive 
to sample size, and there was no significant difference in the estimated parameters from samples 
with at least 100 women (results available from author). 
 
A CASE STUDY OF THE HUTTERITES 
 
In the empirical analysis, the model was applied to Hutterite reproductive histories. (For more 
details about the Hutterites and the data set, see Sheps (1965).) The sample included 7224 
unions. In this sample, 10 women had been married twice. Data related to second unions, as well 
as those 194 unions with missing birth, marriage, or death dates were not included in the 
analysis. The illustrative example was also confined to fecundability above age 20 to eliminate 
the effect of adolescent subfecundity, and 137 women who married before age 20 were not 
analyzed. The sample analyzed contained 370 women who had 2,049 live births. 
     The Hutterite data did not include any information about postpartum amenorrhea or about age 
at onset of sterility. Estimated parameters were obtained from models with different variances of 
postpartum amenorrhea to determine the value of the variance that best fitted the data.  Two 
censoring schemes were used to circumvent the fact that information about age at onset of 
sterility was not available from the Hutterite data, and that sterility was not modeled. In one 
group of models all intervals were used, and in a second group only closed intervals were used.  
Finally, the age schedule of Hutterite fecundability was estimated from models where 
heterogeneity in fecundability was specified either by a gamma or by a homogeneous 
distribution. Parameter estimates are presented in Table 7. 
 
Table7.  Parameter estimates for Hutterite women 

Model Variance of      P.A.                    Monthly hazard by age   
 frailty (months) 20 25 30 35 40 45 
All intervals         
σ2 = 6.0 .255 6.2 .391 .245 .152 .117 .064 .004 
σ2 = 7.0 .275 6.4 .399 .260 .159 .122 .065 .004 
σ2 = 8.0 .286 6.6 .400 .273 .164 .123 .066 .004 
All intervals         
σ2 = 6.0  6.3 .316 .199 .123 .101 .065 .003 
σ2 = 7.0  6.3 .344 .201 .122 .098 .068 .004 
σ2 = 8.0  6.3 .308 .203 .126 .099 .062 .004 
Closed intervals         
σ2 = 6.0 .173 6.2 .360 .250 .177 .148 .091 .111 
σ2 = 7.0 .183 6.4 .364 .264 .185 .154 .093 .112 
σ2 = 8.0 .193 6.6 .366 .278 .193 .160 .095 .113 
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     The results of this illustrative analysis demonstrated that the model proposed could be applied 
to empirical analyses of fecundability. Fecundability, heterogeneity in fecundability, and 
postpartum amenorrhea could be estimated simultaneously, and estimates of fecundability 
reflected the underlying level and age pattern of fecundability, accounting for the effects of 
heterogeneity and postpartum amenorrhea. The mean duration of postpartum amenorrhea was 
estimated to be about 6.5 months, the duration of amenorrhea did not vary significantly by age of 
the women, and information about postpartum amenorrhea could be obtained only by using a 
modeling approach. 
     The model with heterogeneous fecundability fitted the data significantly better than did the 
model with homogeneous fecundability based on the likelihood ratio test (Table 7).  As expected, 
fecundability was underestimated in the model with homogeneous fecundability.  For instance, at 
age 25 the monthly hazard of a live birth was .273 in the heterogeneous model compared to .203 
in the homogeneous model, when the variance of postpartum amenorrhea was set at 8, (or 
fecundability was .238 versus .184). 
     To assess the value that best approximated the true variance of postpartum amenorrhea, and to 
determine the censoring scheme that resulted in the best parameter estimates, goodness of fit 
tests were performed. For each set of parameters listed in Table 7, births were simulated for  
370 women (the same number of observations as in the Hutterite sample used). The empirical 
distributions of waiting times from one birth to next live-birth conception after age 20, 25, 30, 
35, and 40 were calculated from the Hutterite data and from the simulated data.  Very few such 
intervals were longer than 26 lunar months at age 20, so the intervals of 19.5-25 and 26+ were 
combined at age 20. At age 25, 30, 35, and 40 the intervals of < 3 and 3-5 were combined 
because most such intervals were of second or higher order, and they included a period of 
postpartum amenorrhea. The distribution at age 45 was not analyzed because the Hutterite data 
contained only five births after age 45.  The simulation was conducted 1,000 times, and χ2 values 
from the difference of empirical distributions of waiting times from one birth to next live-birth 
conception between actual and simulated data were obtained. 
     The goodness of fit analysis underlined the usefulness of the model and the importance of 
using all birth intervals. Models using all birth intervals and heterogeneous fecundability fitted 
the data well. The simulated waiting times to live-birth conception were in good agreement with 
the actual waiting times when the variance of postpartum amenorrhea was specified as 6, 7 or 8, 
respectively.  Models with varying duration of postpartum amenorrhea by parity did not fit as 
well as models with constant duration of postpartum amenorrhea (Larsen and Yan 2001).  Table 
8 presents the distributions of actual and simulated waiting times by age from the best fitting 
model with the variance of postpartum amenorrhea specified as 8 and fecundability as 
heterogeneous. The goodness of fit analysis suggested that, regardless of the specified value of 
the variance of postpartum amenorrhea, the model from closed birth intervals did not fit the 
Hutterite data (results not shown).  
     The findings from the analysis of Hutterite birth histories were consistent with the results 
from the simulation analysis. In analyses restricted to closed birth intervals, estimated 
heterogeneity was substantially lower, and estimated fecundability increased above age 40, 
reflecting selection bias. Figure 1 illustrates the level and age pattern of estimated fecundability 
from closed and from all birth intervals of Hutterite women, when the variance of postpartum 
amenorrhea was specified to be 8 and heterogeneous fecundability. Thus, when analysis was 
restricted to closed birth intervals, the estimated age pattern of fecundability became distorted 
because of selection bias. 
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Table 8.  Distribution of waiting times from birth to next live-birth conception for Hutterite women1 

      Waiting times in lunar months      
Mean < 3 3 - 5 6 -8 9 -12 13 - 19.4 19.5 - 25 26+  χ2 P-value 
Age 20 (316 observations)2          
Actual          
3.66 .611 .174 .085 .079 .035 .016    
Simulated          
3.62 .616 .208 .085 .047 .028 .016  9.21 .101 
(.008) (.001) (.001) (.000) (.000) (.000) (.000)    
          
Age 25 (284 observations)3          
Actual          
10.70  .232 .218 .243 .204 .081 .021   
Simulated          
11.02  .204 .232 .281 .187 .058 .039 8.22 .145 
(.012)  (.001) (.001) (.001) (.000) (.000) (.000)   
          
Age 30 (195 observations)          
Actual          
13.63  .108 .190 .251 .272 .133 .046   
Simulated          
13.65  .113 .198 .275 .235 .097 .083 7.40 .193 
(.018)  (.001) (.001) (.001) (.001) (.001) (.001)   
          
Age 35 (127 observations)          
Actual          
16.02  .063 .110 .283 .299 .118 .126   
Simulated          
15.50  .090 .165 .246 .246 .122 .131 5.53 .355 
(.026)  (.001) (.001) (.001) (.001) (.001) (.001)   
          
Age 40 (50 observations)          
Actual          
17.45  .060 .160 .140 .220 .220 .200   
Simulated          
17.79  .065 .130 .210 .248 .151 .196 3.29 .655 
(.047)  (.001) (.002) (.002) (.002) (.002) (.002)   
          
Total χ2 value from combined test        33.65 .116 
          
5% critical value of χ2 test by age (df = 5)        11.07  
5% critical value of combined χ2 test (df = 25)        37.65  
          

1 Standard errors are presented in parentheses. 
2 At age 20 waiting times of 19.5 – 25 months and 26+ lunar months are combined. 
3 At age 25 and older waiting times of < 3 lunar months and 3 – 5 lunar months are combined. 
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Figure 1. The age pattern of fecundability for Hutterite women from closed birth intervals and all intervals 
Note: Fecundability =1-exp(-h(x+.5)), where h(x) is the monthly hazard of conception at age x. 
 
DISCUSSION AND CONCLUSION 
 
The present analysis extended previous work on the measurement of fecundability (see, for 
example, D'Souza 1974; Heckman and Walker 1987, 1990; Larsen and Vaupel 1993; Wood et al. 
1994), but also provided additional substantive information about fecundability. 
     A convolution model of postpartum amenorrhea and fecundability was calibrated in a 
simulation analysis prior to its application to empirical data. This simulation showed that the 
model with a piecewise linear function of fecundability by age, a normal distribution for 
postpartum amenorrhea, and a gamma distribution for heterogeneity, accurately captured a wide 
range of variations of fecundability within a woman and across women. For this model, eight 
parameters needed to be estimated: six of them characterized the age pattern and level of 
fecundability, one represented the mean duration of postpartum amenorrhea, and one measured 
the degree of heterogeneity.  
     Simulation also showed that variations in fecundability across women could be summarized 
and quantified by a single value: the variance of frailty. Different models were applied to 
different samples of frailty, and the one-parameter gamma model of frailty was chosen as the 
final model, because it was simple, flexible, and able to capture a wide range of heterogeneity.  
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This analysis also established the accuracy of a simple model of postpartum amenorrhea, and it 
showed that a wide range of distributions of postpartum amenorrhea could be captured by a 
normal model.  Variation in duration of postpartum amenorrhea by age could be captured by a 
piecewise linear function. 
     Empirical analysis of Hutterite birth histories documented that the duration of postpartum 
amenorrhea was about 6.5 months for women of all ages; that fecundability declined almost 
linearly from age 20 to 40; and that the fecundability of a 35-year-old was one half that of a 25-
year-old woman. Fecundability could not be estimated beyond age 40 because the model did not 
take sterility into account.  Variations in fecundability across Hutterite women were 
considerable.  For example, women one standard deviation above the mean had a 2.9 time higher 
hazard of a live-birth conception than did women one standard deviation below the mean.  
Finally, the empirical analysis confirmed the results of the simulation analysis, in particular the 
suggestion that fecundability was downward biased in homogeneous models, and that the age 
pattern of fecundability was distorted when only closed birth intervals were analyzed.  
Some of this decline in fecundability was related to changes associated with age and/or duration 
of marriage.  These changes include a decline in the quality of ova and thus in the chance of 
conception; an increased risk of spontaneous abortion; the possibility of outright sterility; and 
reduced coital frequency (Wood, Holman and O'Connor 1997).  The documented variability in 
fecundability across women might be due primarily to biological factors, such as the risk of 
conception and fetal loss, because there was virtually no observed variation in fertility of 
Hutterite women (Eaton and Mayer 1953; Sheps 1965).   
     The proposed model builds on previous work by simultaneously modeling postpartum 
amenorrhea by age, fecundability by age, and heterogeneity in fecundability.  To illustrate the 
advances made by this model, substantive findings from Hutterite birth histories about the 
duration of postpartum amenorrhea and fecundability by age were compared with results from 
previous research (D'Souza 1974; Heckman and Walker 1987, 1990; Larsen and Vaupel 1993). 
Heckman and Walker (1987) focused on developing approaches to choose among alternative 
models, and they did not provide any direct information about the age schedule of fecundability. 
Thus, in their analysis of Hutterite birth history data, Heckman and Walker (1987) ignored 
postpartum amenorrhea, and they did not present parameter estimates in a form that made them 
interpretable or informative about the age pattern of fecundability. Heckman and Walker (1990) 
confined their analysis to the first birth interval and thereby circumvented, but did not solve, the 
problem of controlling for postpartum amenorrhea.  Heckman and Walker's (1990) work focused 
on measurement issues and presented no substantive findings about the age pattern of 
fecundability.  In fact, the age pattern of fecundability and sterility could not be obtained from 
first birth intervals alone for two reasons.  First, because many women became sterile after they 
had a child, and second, because of selection bias.   
     According to D'Souza (1974, p.121), the duration of postpartum amenorrhea was 7 to 8 
months. This author was not able to capture the age pattern of fecundability because he restricted 
the analysis to closed birth intervals, resulting in upward biased estimates of fecundability with 
age.  D'Souza's model was also unable to capture the level of fecundability because it 
overestimated the duration of postpartum amennorea, it assumed homogeneous fecundability, 
and only couples with at least four children were analyzed. In fact, the caveats in D'Souza's 
model are reflected in the finding that the goodness of fit tests suggested that the model did not 
fit the Hutterite data. 
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     Larsen and Vaupel (1993), like D'Souza (1974), could not capture the age pattern of 
fecundability because they restricted their analyses to closed birth intervals to avoid error 
introduced by not modeling sterility.  The level of fecundability was also inaccurate for these 
authors because they set duration of postpartum amenorrhea to a constant of 5 months for all 
women, and Hutterite postpartum amenorrhea has a distribution with a mean of about 6.5 
months, as noted here.  Thus, Larsen and Vaupel (1993) underestimated fecundability up to the 
early 30s, and at older ages the bias from analyzing only closed birth intervals resulted in further 
distortions of the fecundability estimates.  Thus, goodness of fit tests suggested that the models 
by Larsen and Vaupel (1993), like the model by D'Souza (1974), did not fit the Hutterite data. 
We believe that the fecundability estimates from the model proposed are better, not only because 
the goodness of fit tests suggest that these estimates fit the Hutterite data; but also because prior 
simulation analysis documented that the model accurately captured a wide range of variations in 
fecundability within a woman and across women.  None of the previous models accurately fitted 
the Hutterite data.  To enhance the understanding of the baseline level and age pattern of 
fecundability further studies of other non-contracepting populations are in order.  We are 
currently applying the model proposed here to a number of different historical non-contracepting 
populations.  Preliminary findings suggest that there may not be one baseline level and age 
pattern of fecundability.     
     The model proposed here answers a need in the methods currently available to estimate 
fecundability from birth history data. It includes estimation of postpartum amenorrhea by age, 
fecundability by age and heterogeneity in fecundability from all birth intervals. These 
modifications facilitate estimation of the level and age pattern of fecundability and estimation of 
the variability of fecundability across women.  The model does not, however, include sterility, 
and therefore fecundability is underestimated at older ages of the reproductive age span. The 
magnitude of this error depends on the age pattern of sterility. In populations such as the 
Hutterites, with little disease-induced sterility, the model accurately captures the age pattern of 
fecundability up to age 40, as well as unobserved heterogeneity in fecundability and the duration 
of postpartum amenorrhea. For populations with elevated levels of sterility at young ages, 
analyses of the age pattern of fecundability could be extended to include sterility. The model 
proposed here can be extended to include sterility. 
     In conclusion, the model proposed made it possible to estimate the level and the age pattern of 
fecundability by controlling for postpartum amenorrhea and unobserved heterogeneity; the 
model applied to first as well as to higher order birth intervals.  Finally, the study evaluated the 
effects on estimates of fecundability by confining analysis to closed birth intervals versus 
employing both closed and open birth intervals. 
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