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Abstract 
 
Empirical Bayes estimation for marriage preferences are worked under two kinds of beliefs regarding the 
parameters, e.g., where the marriage preferences seem to be equal or not. In both cases priors are in 
accordance with beliefs. Computational methods for different hyperparameters of the empirical Bayes are 
developed. It is seen from the data that a male of age i  has preferences of marrying a woman in age 
category j . A general model of preferences is given using empirical Bayes procedure. Real life data are 
considered, preference patterns are analysed and a smooth estimate is given.  
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1. Introduction   
  

Marriage and divorce rates directly measure changes in population composition characteristics rather than 
changes in population size as do the other rates of population dynamics, such as fertility, mortality and 
migration. But if the change in population size due to births is considered as a function of the broader 
process of one generation reproducing another - a process that in most societies takes place largely through 
formation of families that produce offspring, then the rates of family formation and dissolution are 
appropriate for consideration under population dynamics. Theoretical model and inference procedures  of 
internal migration which is important for understanding some characteristics of a population were 
considered only in Seal and Hossain (2013a, 2013b, 2013c). In this paper, the current characteristic 
deserves attention to understand population. 
 
Data on marriage are obtained directly from the national vital statistics registration system or, less often, 
from the continuous population register. In addition, data on marital status, available from censuses and 
sample surveys in most countries, may be used to estimate the number of marriages and marriage rates. This 
indirect method represents the only source in countries where census data are satisfactory but registrations 
of data are lacking or inadequate. Only a few of the economically developed countries in Africa, Asia and 
the United States of America publish registration statistics on marriages. 
 
Perhaps the best single source of international marriage statistics is the Demographic Yearbook of the 
United Nations. Two tables are shown annually; one on marriages and crude marriage rates for the last 
several years, and the other on age of bride and age of groom from the latest year record. 
 
Now suppose ikii ppp ,...,, 21  are the probabilities of marrying a female of age category kj 1,2,...,=  at 

age group li 1,2,...,=  of male. Suppose further that in  data are available. Then estimates of ijp  using a 

general model are to be developed. 
 
For modeling this this we are to suggest a prior distribution for a problem. Actually the system will speak 
the general form of prior.The form of prior can be understood from the form of the problem. We seek to 
make the prior finer and finer from only the data set. Some researchers  give emphasis on data and not on 
prior, which is not the spirit of Bayes procedure. So, once we have feeling about prior, we should take its 
general form and then from data we make it concrete as possible.Clearly, in this case, i.e., marriage 
preference at an age, the general form of the prior must be multivariate Beta or Dirichlet prior. With the 
data, this can be made as concrete as possible using Bayes procedure. Now, from this general form in terms 
of variations of hyperparameters and data, empirical Bayes procedure is obtained.  
 
In the following sections empirical Bayes estimations for marriage preferences are considered under two 
different beliefs: 1) when the hyperparameters are identical for different ages, i.e. the preferences are equal 
at all ages and 2) when one does not have such beliefs. Following this, unknown hyperparameters are 
estimated,computational methods are worked out using EM algorithm, real life data are In section 
considered and estimations using this method are given.The relevant R- codes are presented in the 
appendix. 

   
2. Empirical Bayes Estimation of marriage preferences of different age groups 

  
In this section, the estimators of the unknown parameters involved in the prior distribution are obtained.The 
Bayes estimator )( ijnδ  of ijp  depends on prior distribution )|( απ p . When ijα ’s are unknown, the 

empirical Bayes approach is employed to combine information from observations 
kilevelageatni ,1,2,=, L . 
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For general form of prior distribution of p  it may be possible to compute the posterior distribution of p  
given n  without the complete knowledge of the distribution function of p . The estimate in such 
situations may involve unknown parameters which are estimated from the marginal distribution of n . 
 

  Case 1: Priors for different age groups are same  
  

Let  
 ),,,;(~),,,(= 2121 ikiiiikiii pppnlMultinomiannnn LL ⋅  

and  
 kiallforDirichletpppp kikiii ,1,2,=),,,,(~),,,(= 2121 LLL ααα  

i.e., the k  groups have common prior distribution or they have same preferences. 
 
Therefore the Bayes estimator of ijp  under sum of squared error loss is  
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Then the vector iy  approximately follow Dirichlet distribution (Johnson and Kotz (1969).As 

kYYY ,,, 21 L  are k  random vectors from Dirichlet ),,,( 21 kααα L , the likelihood function becomes 
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where )(log=)( t
t

t Γ
δ
δψ  is a digamma function. 

 
Then the maximum-likelihood equations for estimators of ),,,( 21 kααα L  are given by 
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The equations (2.2) must be solved by numerical methods. 
 

   Case 2: Priors for different age groups have different choices  
 
Now  

 kiallforpppnlMultinomian ikiiii 1,2,...,=),,,,;(~ 21 L⋅  

such that  
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and ip  have Dirichlet prior distribution i.e.,  

 kiallforDirichletp ikiii ,1,2,=),,,,(~ 21 LL ααα  

Then the Bayes estimator of ijp  (Seal and Hossain, Oct 2013) under squared error loss is  
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3. Computational method when hyperparameters are the same for k  age groups (i.e priors are 
identical) 

 
Now using the approximation  
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Thus, from (3.1) ,the estimators of jα , i.e. jα̂  are given by  
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Starting from these values of jα̂  from (3.2), solutions of (2.2) can be obtained by an iterative process. 

 

Let us denote the value of α  at the r th subsequent iteration of Newton-Raphson method by )(rα . Then 
the value of α  in the next iteration is given by 
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From the likelihood function (2.1), the score has entries  
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where 
}={

1 'jj
 is the indicator function of the event }={ 'jj , and )(t'ψ  is the trigamma function 
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The observed information can be summarised in matrix form by 
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where D  is a diagonal matrix with j th diagonal entry  

 kjd j
'

j ,1,2,=),(= Lαψ  

c  is the constant )( ⋅αψ ' , and 1 is a column vector of all 1’s. 
 

Thus the limiting value of ),,,(= 21 kαααα L  as ),,,(= 21
∗∗∗∗
kαααα L  gives the empirical Bayes 

estimate in this case. 
  

4. Computational method when hyperparameters are different for k  age groups (i.e the priors are 
not identical) 

  
Consider the case where ijα ’s are unknown parameters, for kji ,1,2,=, L . Here,  
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Now,let us find out the estimate of the Dirichlet parameter α  from observed data n. But it is not possible 
to start with an estimate α  from observed data for each component using equation (3.2) with 1=k . In 
this case of individual state, it is seen that 1/2=ˆ ijα  which is absurd. It is possible to compute iteratively 

the MLE of α  from observed data by using Quasi-Newton accelerated EM algorithm. 
 
Now, we estimate iα  individually, since estimates of ),,(= 1 ikii ααα L  depend only on 

),,(= 1 ikii nnn L  and independent of ),,(= 1 jkjj nnn L , for )( ij ≠ . 
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After integrating w.r.t. ),,,( 21 ikii ppp L  from joint density function of ),,,( 21 ikii nnn L  and 
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where the integration is carried out over the region  
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which is Multinomial-Dirichlet distribution. 
 
Now, ),,,( 21 ikii nnn L  denotes an observed random sample from Multinomial-Dirichlet distribution with 

parameters ),,( 1 iki αα L  for ki ,1,2,= L . Then like incomplete-data (i.e. instead of n and p it involves 

only n ) the log likelihood function becomes  
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The complete-data log likelihood is  
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The EM algorithm approaches the problem of solving the incomplete-data likelihood equation (4.4) 
indirectly by proceeding iteratively in terms of the complete-data log likelihood function )(log αcL . The 

obstacle, due to unobservability is overcome by averaging the complete-data likelihood over its conditional 
distribution given the observed data n. But in order to calculate this conditional expectation, a value for α  
is to be given. 
 

Let (0)
iα  denote the starting value of iα  and )(r

iα , the value of iα  on the r th subsequent iteration of 

the EM algorithm. 
 
E-step: Then on the first iteration of the EM algorithm, the E-step requires the computation of the 

conditional expectation of )(log αcL  given  n, using (0)
iα  for iα , which can be written as 
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It is seen from (4.5) that, in order to carry out M-step,it is necessary to calculate the term  
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The calculation of the above term can be avoided if we make use of the identity ( Lange (1995b) ),  

 kiallforQnS r
ii

i
r

ii
r

iii ,1,2,=,])/,([=);( )(=

)()(
L

αα
δαααδα  

where );( )(r
iii nS α  are the score statistics given by  

 kiallforLnS r
i

r
i

r
iii ,1,2,=,)/(log=);( )()()(

Lδααδα  

On evaluating );( )(r
iiij nS α , the derivative of (4.4) with respect to ijα  at the point )(= r

ii αα ,it becomes, 

 

 )()()()()()()( )/(log)/(log=)/(log=);( r
ij

r
ij

r
ij

r
i

r
ij

r
i

r
iiij LnS δααδδααδδααδα Γ−Γ ⋅  

 

 (4.6),1,2,=,,)/(log)/(log )()()()( kjiallfornn r
ij

r
ii

r
ij

r
ijij Lδααδδααδ ⋅⋅ +Γ−+Γ+  

On equating );( )(r
iiij nS α  equal to the derivative of (4.5) with respect to ijα  at the point )(= r

ii αα , the 

following identity is obtained.  

 )()()()(
1)( )/(log)/(log=),,|(log r

ij
r

ii
r

ij
r

ijijikiijr
i

nnnnpE δααδδααδ
α ⋅⋅ +Γ−+ΓL  

 



64 

 

 )()(= )()( r
ii

r
ijij nn ⋅⋅ +−+ αψαψ  

where  
 sss δδψ )/(log=)( Γ  

is the digamma function of s. 
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M-step: On the M-step at the 1)( +r th iteration of EM algorithm is to maximise ),( )(r
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iL α . 

 
Finally,the limiting solutions are obtained.  
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5. Working with real data set 

  
Table 1 corresponds to the data of the age of bride by age of groom for marriages in Israel (Jews Only):1966 
(Shryock and Siegel 1976; using Table C-10 of the Israeli Central Bureau of Statistics, Statistical Abstract 
of Israel, 1968, NO. 19). Tables 2 and 3 give the estimates of preferences respectively under two cases as 
specified earlier. The respective program codes are also given in the appendix. 
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Table 1.  Age of bride by age of groom for marriages in Israel (Jews only):1966 
   

 
  

  
Table  2.  Empirical Bayes estimate of marriage preferences when prior parameters are same  

for all age groups 
   

 
  

  
Table  3.  Empirical Bayes estimate of marriage preferences when prior parameters are different  

for all age groups 
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6. Concluding remarks 
 

In this paper empirical Bayes estimate of marriage preferences for different age groups has been 
demonstrated. Even fitting the priors having equal choices, the estimate of the probabilities are not same for 
different age groups, which is reasonable to guess. This is evident from table 2. But table 3 is realistic. The 
choices for different age groups are different, as row vectors are different in this table. Moreover, table 3 is 
interesting e.g. bride within age group 20-24 is most preferable. More importantly, we have worked out in 
this paper for a class of Dirichlet priors, which are reasonable under two cases where hyperparameters are 
the same for all age groups and different for all age groups. The preference pattern may be useful in vital 
statistics and to understand the nature of a family.Using this method together with R-codes, this kind of data 
may be handled. 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



67 

 

References  
   

Israeli Central Bureau of Statistics, Statistical Abstract of Israel, 1968, No. 19, Jerusalem, September 1968, 
table C-10.  
 
Johnson, N.L., and S. Kotz, (1969):  Distributions in Statistics: Discrete Disributions. John Willy & Sons, 
New york. 
 
Johnson, N. L., S. Kotz, and N. Balakrishnan, (1994):  Continuous Univariate Distributions. Vol. 2, John 
Willy & Sons, New York. 
 
Lange, K. (1995b): "A quasi-newton accleration of the EM algorithm." Statistica Sinica, 5, 1-18. 
 
Seal, B. and Hossain, S. J.(2013a): "Testing of hypotheses: LRT test of some important hypothesis for 
internal migration model".  Slovak Statistics and Demography- Scientific Journal, Vol. 23, Issue 2, 35-47 
 
Seal, B. and S. J. Hossain, (2013b): "Measure of state’s importance and its estimation from migration data".  
ProbStat Forum, Vol. 6, April 2013, pages 10-17 
 
Seal, B. and S. J. Hossain, (2013c): "Bayes and Minimax Estimation of Parameters of Markov Transition 
Matrix".  ProbStat Forum, Vol. 6,October 2013.  
 
Shryock, H. S., et al. (1976):  The Methods and Materials of Demography. Academic Press, New York.  
 

   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



68 

 

Appendix  
 
Program for EM Bayes estimator of marriage preferences when all age groups the same prior (Dirichlet) 
parameter.  
 

The  est.embayes() function needs an argument. Value of x  is the sample transition matrix. 
est.embayes< - function(x) 
{ 
if(ncol(x)!= nrow(x)) 
stop("The given matrix is not a square matrix") 
k < - ncol(x) 
obs.mat< - x 
prob.mat< - matrix(0, ncol=k, nrow= k) 
Q< - matrix(0, ncol=k, nrow= k) 
embayes.est< - matrix(0, ncol=k, nrow= k) 
I < - diag(k) 
alpha< - rep(0,k) 
g< - rep(1,k) 
for(i in 1:k){ 
for(j in 1:k){ 
if(x[i, j] != 0.0) obs.mat[i, j]< - obs.mat[i, j] 
else obs.mat[i, j]< - obs.mat[i, j]+1 
prob.mat[i, j]< - obs.mat[i, j]/sum(obs.mat[i, ]) 

Q[i, j] < - prob.mat[i, j](̂ 1/k) 
} 
} 
for(j in 1:k){ 
for(i in 1:k){ 
g[ j] < - g[j]*Q[i, j] 
} 
} 
for(j in 1:k){ 
alpha[j]< - (k-1)/2*g[j]/(1-sum(g))+0.5 
} 
cat("Initial value of dirichlet parameters") 
print(alpha) repeat{ 
fisher.inf< - matrix(0, ncol=k, nrow= k) 
inv.finf < - matrix(0, ncol=k, nrow= k) 
S< - rep(0,k) 
if(any(alpha< = 0.0001)) alpha< - alpha - min(alpha)+1 
for(i in 1:k){ 
for(j in 1:k){ 
if(j!= i) fisher.inf[i, j] < - -k*trigamma(sum(alpha)) 
else fisher.inf[i, j]< - k*trigamma(alpha[i]) -k*trigamma(sum(alpha)) 
} 
S[i] < - k*digamma(sum(alpha)) -k*digamma(alpha[i]) + sum(log(prob.mat[ ,i])) 
} 
if(det(fisher.inf)< = 0.001) fisher.inf< - fisher.inf+I 
else fisher.inf< - fisher.inf 
inv.finf < -solve(fisher.inf) 
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c< -inv.finf%*%S 
alpha< -alpha+c 
if(any(abs( c)< 0.00001, na.rm=F)) break 
} 
cat("Estimated value of Dirichlet parameters") 
print(alpha) 
for(i in 1:k){ 
for(j in 1:k){ 
embayes.est[i, j]< -(obs.mat[i, j]+ alpha[i])/(sum(obs.mat[i,])+sum(alpha)) 
} 
} 
cat("Empirical Bayes estimate of marriage preferences when prior parameters are same for all age    
groups") 
print(embayes.est) 
} 

 
Program for empirical Bayes estimator of marriage preferences when all age groups have different prior 
(Dirichlet) parameters using EM algorithm.  
 

The  embayes.est() function needs an argument. Value of "N" is the sample transition matrix and 
"alpha" is the initial value of the dirichlet parameters. 
embayes.est< - function(N, alpha) 
{ 
if(ncol(N)!=nrow(N)) 
stop("Given matrix is not a square one") 
if(ncol(alpha)!=nrow(alpha)) 
stop("Given parameter matrix is not asquare one") 
if(ncol(N)!=ncol(alpha)) 
stop("Given matrices are not of same dimention") 
k < -ncol(N) 
bayes.est< - matrix(0,ncol=k,nrow=k) 
embayes.est< - matrix(0,ncol=k,nrow=k) 
fisher.inf< - matrix(0,ncol=k,nrow=k) 
inv.finf < - matrix(0,ncol=k,nrow=k) 
B0< - diag(k) 
B < - matrix(0,ncol=k,nrow=k) 
D < - matrix(0,ncol=k,nrow=k) 
P< - matrix(0,ncol=k,nrow=k) 
S< - rep(0,k) 
d< - rep(0,k) 
v < - rep(0,k) 
h< - rep(0,k) 
hd< - matrix(0,100,k) 
w < - rep(1,k) 
z< - 0 
g< - 0 
m< - 0 
u< - rep(0,k) 
eps< - 0.00001 
#Loop for Bayes estimate# 
for(i in 1:k){ 
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for(j in 1:k){ 
bayes.est[i,j]=(N[i,j]+alpha[i,j])/(sum(N[i,])+sum(alpha[i,])) 
} 
} 
cat("Bayes estimate of transition pobability matrix") 
print(bayes.est) 
#To calculate Fisher information matrix# 
for(i in 1:k){ 
for(j in 1:k){ 
D[j,j] < - trigamma(alpha[i,j])-trigamma(N[i,j]+alpha[i,j]) 
u[j] < - digamma(alpha[i,j])-digamma(N[i,j]+alpha[i,j]) 
hd[1,j]< - digamma(N[i,j]+alpha[i,j])-digamma(sum(N[i,])+sum(alpha[i,])) 
} 
z< - trigamma(sum(alpha[i,]))-trigamma(sum(N[i,])+sum(alpha[i,])) 
g< - digamma(sum(alpha[i,]))-digamma(sum(N[i,])+sum(alpha[i,])) 
S< - g-u 
fisher.inf< - D-z*(w%*%t(w)) 
inv.finf < - solve(fisher.inf+B0) 
d< - inv.finf%*%S 
alpha[i,]<-alpha[i,]+d 
if(any(abs(d)< eps,na.rm=F)) break 
for(r in 2:100){ 
if(any(alpha[i, ]<= 0.0)) alpha[i, ]< - alpha[i, ]-min(alpha[i,])+1 
for(j in 1:k){ 
D[j,j] < - trigamma(alpha[i,j])-trigamma(N[i,j]+alpha[i,j]) 
u[j] < - digamma(alpha[i,j])-digamma(N[i,j]+alpha[i,j]) 
hd[r,j] < - digamma(N[i,j]+alpha[i,j])-digamma(sum(N[i,])+sum(alpha[i,])) 
} 
z< - trigamma(sum(alpha[i,]))-trigamma(sum(N[i,])+sum(alpha[i,])) 
g< - digamma(sum(alpha[i,]))-digamma(sum(N[i,])+sum(alpha[i,])) 
S< - g-u 
fisher.inf< - D-z*(w%*%t(w)) 
h< - hd[r, ]-hd[r-1, ] 
v < - h+B0%*%d 
m< - t(v)%*%d 
q< - matrix(m, ncol=k, nrow=k) 
P< - v%*%t(v) 
B < - B0+P/q inv.finf< - solve(fisher.inf+B) 
d< - inv.finf%*%S 
alpha[i,]< - alpha[i,]+d 
if(any(abs(d)< eps, na.rm=F)) break 
} 
} 
cat( "Estimate of dirichlet parameter.") 
print(alpha) 
for(i in 1:k){ 
for(j in 1:k){ 
embayes.est[i, j]< - (N[i, j]+alpha[i, j])/(sum(N[i, ])+sum(alpha[i, ])) 
} 
} 
cat("Empirical Bayes estimate of marriage preferences when prior parameters are different for all 
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age groups") 
print(embayes.est) 
} 

 


