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Abstract 

 

Mean age at death in a period life table is a major indicator of population health, as is the table’s variance 

in age at death. Taylor’s Law is a widely observed empirical pattern that relates variances to means in sets 

of non-negative measurements via an approximate power function. It has found application to human 

mortality. We add to this research by showing that Taylor’s Law leads to a model that reasonably describes 

the relationship between mean age at death in a life table (which is the same as life expectancy at birth) and 

the life table’s variance in age at death. We built a demonstration model, tested its accuracy, and found that  

it provides reasonably accurate estimates of variance in age at death in a life table.  Employing independent 

data, the model was used to provide estimates of variance at age in death for six countries, three of which 

have high levels of life expectancy at birth and three of which have lower levels.  The two parameters in 

Taylor’s Law, a and b, can be interpreted, respectively, as: (1) a ≈ the product of life expectancy at birth 

and the sum of mean years lived and mean years remaining; and (2) b ≈ the square of life expectancy at 

birth. This provides Taylor’s Law with a theoretical foundation when it is used to estimate variance in age 

at death in life tables constructed for human and other species. A significant strength of our application is 

that where mean age at death itself is estimated, it provides an estimate of variance in age at death that may 

not otherwise be available. This is useful because major agencies have produced estimates of life 

expectancy at birth for small areas. We illustrate this important application of the TL Method using 

empirical data and conclude that there is a need for a model that can produce accurate estimates of variance 

in age at death in a life table.  
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Background 

Taylor’s law (Taylor 1961) is a widely observed empirical pattern that relates the variances to the means of 

sets of non-negative measurements via an approximate power function: varianceg ≈ a × (meang)
b, where g 

indexes the group of measurements (Reuman et al. 2017: 6788).  It has found application in linguistics 

(Kobayashi and Tanaka-Ishii. 2018), physics (Eisler Bartos and Kertész 2008), and across a wide range of 

biological specialties (Azevedo and Leroi 2001, Cohen Xu and W. Schuster 2012, Cohen Xu, and Brunborg 

2013, Isham 1991, Kaltz et al. 2012, Kilpatrick, Ives 2003, Taylor 2019, and Vucetich et al. 2000).  Bohk, 

Rau and Cohen (2015) examined Taylor’s law (TL) in conjunction with death rates and changes in these 

rates over time. They found that TL described a regular pattern in human mortality and suggested that it 

might be used (1) in mortality forecasting (to evaluate the quality of forecasts and to justify linear mortality 

assumptions) and (2) to reveal minimum mortality at some ages. In this brief report, we show for the first 

time that TL relates the variance of age at death in given life table to mean age at death (life expectancy at 

birth) in the same life table.  Because of the fact that a period life table represents a stationary population, 

these results can be applied to the latter.   

Mean age at death in a period life table is clearly a topic of interest because it is a major indicator of 

population health (Muszyńska and Janssen 2016). Variance in age at death in a period life table is a topic 

of interest because it can be used to explore substantive issues regarding health disparities (Vaupel 1986, 

Vaupel, Zhang, and van Raalte 2011) and provides a foundation for formal mortality analysis (Edwards and 

Tuljapurkar 2005, Hakkert 1987, Hill 1993, Schindler et al. 2012, Tuljapurkar and Edwards, 2011).   

Wrycza (2104) shows that variance in age at death for a life table can be calculated as: 

      σ 2 
 = � (� − ��)

�	

� 
(�)�(�)                            [1] 

where 

        σ 2 
 = variance in age at death 

        x = age 

        e0 = life expectancy at birth 

Equation [1] represents, in continuous terms, a standard approach to calculating variance, namely, sum the 

squared differences between each of the measurements and their mean.  

 

Results 

 

This study uses a sample of 14 World Bank regional distributions of length of life in 1970 and 2000 for 

which e0 and the standard deviation in e0 are provided (Edwards 2010: Table 2) These measurements 

represent a group, g, in the TL sense as described at the beginning of this paper. Table 1 provides these 14 

measurements, showing life expectancy at birth, e0 (mean age at death in each life table) and both the 

standard deviation (σ) and variance (σ2) for each of seven regional populations at the two points in time. 
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Natural logarithms were calculated for each measurement in Table 1 and placed in a bivariate regression 

framework: 

 

                ln (σ2) = a +b*(ln(e0)) + ε                          [2] 

where  

σ2 and e0 are as defined before  

and ε = error 

 

This yielded the following model: 

      ln(σ2) = (15.878) - (2.3194*ln(e0))                                [3] 

      r2 = 0.89 
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As can be seen from the coefficient of determination (r2 = 0.89) the logarithmic regression model fits the 

data quite nicely.  Figure 1 provides a graphic view of this relationship defined by equation [3].   

 

                                                     

 

 

 

The fit of the model given by equation [3] demonstrates that TL applies to the relationship between e0 and 

σ2. The sign of the model’s slope parameter, b = -2.3194 as shown in equation [3], is consistent with findings 

that as life expectancy at birth increases, variance in age at death in the life table declines (Wrycza 2014), 

a property which also is visible in Table 1. 

 

Test 

 

Horiuchi, Wilmoth, and Fletcher (2008: 792) provide standard deviations for mean ages at death in life 

tables for Japanese females for four points in time, 1950, 1968, 1986, and 2004. These values (taken from 

Table 1 in their article) are, respectively, 25.91, 16.55, 13.91, and 13.59. Squaring these values yields the 

variances, which are, respectively, 671.33, 273.90, 193.49, and 184.69. The mean ages at death (life 

expectancy at birth) associated with these variances are, respectively, 60.90, 74.29, 80.98, and 85.59. Using 

these values in conjunction with equation [3] yields estimated variances of 570.8032, 359.9912, 294.7382, 

and 259.2184, respectively. The Mean Absolute Percent Error in this set of estimates is 90.60 and the Mean 

Algebraic Percent Error is 40.34. These two summary measures of error suggest that equation [3] is 

reasonably accurate for populations that have e0 values ranging from 61 to 86 years, with the proviso that 

as the Mean Algebraic Percent Error shows, on average it tends to over-estimate variance in age at death 

for life tables. 

 

 

 

y = -2.3194x + 15.878
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Figure 1. Ln(Variance) by ln(e0)
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Application 

 

Again, using equation [3], Table 2 provides examples for three high e0 countries using 2017 life expectancy 

at birth found in period life tables, followed by examples for three countries that have relatively lower e0 

levels in 2017 (Human Mortality Data Base 2021). 

                                             

 

 

 

Discussion 

 

In this section, we provide an interpretation of the parameters found in TL.  As background, we start with 

Kim and Aron (1989) provide a proof that mean age in a stationary population, μa, is equal to mean expected 

years remaining, μr : 

μa = μr        [4] 

Moving on, Vaupel (2009) demonstrated that that the mean number of years lived in a stationary    

population, μl, is equal to the mean expected years remaining, μr : 

μa = μl        [5] 

Finally, Pressat (1972: 479-480) examined the relationship between mean age of a stationary population 

and life expectancy at birth and found (in the notation we use): 

μa = 0.5(e0  +( σ 2/e0))                                [6] 

 where  

  μa, is the mean age of the stationary population 

   e0  = life expectancy at birth 

  σ2 
 = variance in age at death 

Re-arranging the terms in [6] yields                  

                                σ2 = [e0(2μa)] –   e0
2                [7] 

 

Table 2. Estimated Variance in e0 for Six 2017 populations

Population 2017 e0

Estimated 2017 

Variance in e0

Finland, Total 80.3 300.56

France, Males 79.26 309.79

Singapore, Females 85.2 261.98

Bosnia-Hergz, Total 76.76 333.69

Russian Fed., Males 67.53 449.15

Bangladesch Males 73.8 365.56
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Per equations [4] and [5], we see that equation [7] can be re-expressed as    

σ 2 = [e0(μl + μr)] –   e0
2        [8]  

 

Taking logarithms of [7], we have  

ln(σ 2) = ln([e0(μl + μr)] –   ln(e0
2 )  = 

2ln(σ) = ln(e0) + ln((μl + μr)) -2ln(e0)    [9] 

 

Using my "group” and its notation, TL can be expressed as 

         σ2         ≈     a(e0)
b                                                  [10] 

By using equation [7] we see that equation [10] can also be expressed as 

[e0(2μa,)] –   e0
2   ≈     a(e0)

b                                                [11]                                      

And further using equation [8], equation [11] can be expressed as  

[e0(μl + μr)]   –   e0
2   ≈     a(e0)

b                                         [12]                                      

Using equation [9] to reduce the left side of [12] and taking logarithms of both sides yields 

ln(e0) + ln((μl + μr)) -2ln(e0)  ≈    ln(a) + (b)(ln(e0))          [13]    

From [13] we can see that the intercept, a, of the logarithmic TL regression model is equivalent to 

multiplying e0 by the sum of mean years lived and mean years remaining and that the (unsigned) slope 

coefficient, b, is equivalent to 2. That is, squaring e0. Thus, in the case of variance in mean age at death in 

a stationary population, the two parameters in Taylor’s Law, a and b, can be interpreted, respectively, as 

approximating the product of life expectancy at birth and the sum of mean years lived and mean years 

remaining and as approximating the square of life expectancy at birth. In the model constructed in this 

paper, equation [3], we see that, unsigned, b = 2.3194, which approximates 2.  As observed earlier, the fact 

that b is negative ( b= -2.3194) is consistent with findings that as life expectancy at birth increases, variance 

in age at death in the life table declines (Wrycza 2014), a property which also is visible in Table 1. 

The substantive interpretation of the two parameters provided here is also a useful feature in that TL clearly 

has a theoretical basis and is more than just an empirical “law” when applied to variance in age at death in 

a life table. 

A useful feature of the TL method is that it can be used to estimate the Gompertz age slope (β) of log 

mortality.  Tuljapurkar and Edwards (2011: 7) show that σ2 ≈ 1/ β2, with a high level of accuracy. We easily 

can re-arrange the terms to show that β ≈ (1/ σ2)½. Thus, once we have estimated σ2 via the TL method from 

an estimated e0, we can, in turn, use σ2 to estimate β, the Gompertz slope of log mortality for those over the 

age of ten in the population associated with the estimated e0.  
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Conclusion 

 

The evidence presented in this pilot study suggests that the TL method can be used to generate reasonably 

accurate estimates of variance in age at death for a life table from life expectancy at birth (e0). The TL 

method also can be used where e0 itself is estimated (Arias et al., 2014; Congdon, 2014; Dwyer-Lindgren 

et al. 2017, Swanson, 1989; Swanson and Stockwell, 1986, 1988; Swanson and Sanford, 2012; Swanson, 

McGehee, and Hoque, 2009), given that it is within this same range. This is a significant strength of the TL 

method because, with it, variance in age at death can be estimated where it may otherwise not be available.  

As two examples, the TL method could be used to estimate variance in age at death from the census tract 

e0 estimates produced by the Centers for Disease Control (Arias et al., 2018) and those at the county level 

produced by the Institute for Health Metrics and Evaluation (2017). These small areas are important because 

health inequalities are distributed geographically, as is found in the study (Swanson and Sanford, 2012) 

from which we take data to illustrate this application of the TL Model shown as equation [3].  

 

The results of applying this TL Model to the estimated e0 values for counties in Washington stratified by 

SES level taken from Swanson and Sanford (2012: Table 9a) are shown in Table 3, where we can see, as 

expected, when e0 increases, variance in age at death declines. For the low SES county populations, going 

from a mean e0 of 71.12 in 1990 to a mean e0 of 76.03 in 2010 resulted in a decline of nearly 15 percent in 

the mean of variance in age at death (where 15% ≈ ((340.91 – 398.90)/398.90)*100). For the high SES 

counties, going from a mean e0 of 72.78 in 1990 to a mean e0 of 77.24 in 2010 resulted in a decline of nearly 

13 percent in the mean of variance in age at death (where 13% ≈ ((328.91 – 377.07)/377.07)*100). 

Importantly, the estimated variances by county now provide us with a view of the life expectancy 

differentials within each county.  

 

As an illustration of how rigorous analyses might proceed in terms of examining life expectancy 

differentials within a geographic unit, we provide a quick sketch comparing two counties, Asotin and 

Pacific (Table 3).  Swanson and Sanford (2012) found Asotin and Pacific Counties to be among the 10 low 

SES counties in Washington State.  Neither county has a large “special” population (university, prison, 

military base, or other large group quarters facility) and both are relatively isolated. In 2010, the population 

of Asotin County was 21,623 of which 24 percent were aged 65 or over and 89.9 percent were White, non-

Hispanic; the 2010 population of Pacific County was 20,920, of which 32 percent were aged 65 and over 

and 81.7 percent were White, non-Hispanic (U.S. Census Bureau, 2022). The U.S. Internal Revenue Service 

(2022) reports that of 9,775 federal tax returns filed in 2011 for Asotin County, 142 (1.5%) reported incomes 

of $200,000 or more. This group of 142 filers had 14.3 percent ($64.89 million) of the $454.6 million in 

adjusted gross income (AGI) reported for Asotin County in 2011, giving each of these 142 filers an average 

AGI of $456,951, which is 11.3 times higher than the average AGI of $40,452 for the remaining 9,633 

filers. Because of the positive correlation between income and life expectancy noted by Swanson and 

Sanford (2012) among many others, the high-income group in Asotin is likely to have an average level of 

life expectancy higher than that in the low income group. Thus, given the homogeneity in its racial/ethnic 

make-up, this concentration of income among a small proportion of the population may be a reason that 

Asotin County’s variance in age at death (356.48) was the 2nd highest among Washington State’s 10 low 

SES counties in 2010.   
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  Table 3. Estimated Variance in Age at Death for counties in Washington by Year and SES Level

LOW SES COUNTIES

County 1990 e0

estimated 

variance in age 

at death County 2010 e0

estimated 

variance in 

age at death

Asotin 69.67 416.96 Asotin 74.54 356.48

Columbia 66.49 464.68 Ferry 75.7 343.94

Grant 72.16 384.35 Grays Harbor 74.34 358.71

Grays Harbor 69.75 415.86 Kittitas 77.5 325.70

Kittitas 73.82 364.60 Lewis 75.24 348.84

Klickitat 71.77 389.21 Okanogan 76.18 338.94

Okanogan 70.74 402.48 Pacific 76.21 338.63

Pacific 70.5 405.67 Pend Oreille 75.85 342.37

Pend Oreille 72.18 384.10 Whitman 78.95 311.99

Whitman 74.13 361.07 Yakima 75.74 343.52

MEAN 71.12 398.90 MEAN 76.03 340.91

HIGH SES COUNTIES

County 1990 e0

estimated 

variance in age 

at death County 2010 e0

estimated 

variance in 

age at death

Benton 72.37 381.77 Benton 77.04 330.22

Clark 71.82 388.58 Clark 75.99 340.90

Island 73.74 365.52 Island 79.2 309.71

King 71.85 388.21 King 76.4 336.68

Kitsap 72.59 379.09 Kitsap 76.09 339.87

Pierce 71.55 391.99 Pierce 75.44 346.70

San Juan 75.41 347.02 San Juan 81.67 288.42

Skamania 72.36 381.89 Skagit 76.45 336.17

Snohomish 72.7 377.76 Snohomish 76.86 332.02

Thurston 73.45 368.87 Thurston 77.22 328.44

MEAN 72.78 377.07 MEAN 77.24 328.91  
 

 

In looking at Pacific County, which has a population composition similar to that of Asotin, we find that 114 

(1.2%) of its 9,275 filers had 11.7 percent ($45.71 million) of the total 2011 AGI ($389.46 million), giving 

each of these 114 filers an average AGI of $400,982 (U.S. Internal Revenue Service, 2022), which is 10.7 

times higher than the average $37,523 AGI of the other 9,161 filers in Pacific County.  Thus, for Pacific 

County, where the average income among fewer wealthy people is not as high as in Asotin County, there 

are likely both fewer and less wealthy people in its high average life expectancy group relative to the low-

income group than is the case for Asotin County, which would tend to lower the average life expectancy of 

the high-income group. This may be a reason why Pacific County has a lower variance in age at death 

(338.63) in 2010 than found in Asotin County (356.48).  As this quick sketch suggests, the combination of 
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income data, racial/ethnic composition information, life expectancy estimates, and estimates of variance in 

age at death (along with other variables), may provide a path to more rigorous analyses that could potentially 

reveal more about life expectancy differentials. 

 

We conclude by stating that our empirical examples show there is a need for a model that can produce 

reasonably accurate estimates of variance in age at death in a life table and our demonstration model 

suggests that this can be done using the TL Method. As Tuljapurkar and Edwards observe (2011: 516), 

“…variance in length of life is costly, whether viewed at the population level as aggregate health inequality 

or at the individual level as a mean-preserving spread in how long we live.” Put another way, this variance 

represents the final inequality (Tuljapurkar 2010). 
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